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Abstract

Background: Acute high level carbon monoxide (CO) exposure can cause immediate cardio-respiratory arrest in
anyone, but the effects of lower level exposures in susceptible persons are less well known. The percentage
of CO-bound hemoglobin in blood (carboxyhemoglobin; COHb) is a marker of exposure and potential health
outcomes. Indoor air quality guidelines developed by the World Health Organization and Health Canada, among others,
are set so that CO exposure does not lead to COHb levels above 2.0%, a target based on experimental evidence on
toxicodynamic relationships between COHb and cardiac performance among persons with cardiovascular disease
(CVD). The guidelines do not consider the role of pathophysiological influences on toxicokinetic relationships.
Physiological deficits that contribute to increased CO uptake, decreased CO elimination, and increased COHb formation
can alter relationships between CO exposures and resulting COHb levels, and consequently, the severity of outcomes.
Following three fatalities attributed to CO in a long-term care facility (LTCF), we queried whether pathologies other
than CVD could alter CO-COHb relationships. Our primary objective was to inform susceptibility-specific modeling that
accounts for physiological deficits that may alter CO-COHb relationships, ultimately to better inform CO management
in LTCFs.

Methods: We reviewed experimental studies investigating relationships between CO, COHb, and outcomes related to
health or physiological outcomes among healthy persons, persons with CVD, and six additional physiologically
susceptible groups considered relevant to LTCF residents: persons with chronic obstructive pulmonary disease
(COPD), anemia, cerebrovascular disease (CBD), heart failure, multiple co-morbidities, and persons of older age
(≥ 60 years).

Results: We identified 54 studies published since 1946. Six studies investigated toxicokinetics among healthy
persons, and the remaining investigated toxicodynamics, mainly among healthy persons and persons with CVD. We
identified one study each of CO dynamics in persons with COPD, anemia and persons of older age, and no studies of
persons with CBD, heart failure, or multiple co-morbidities. Considerable heterogeneity existed for exposure scenarios
and outcomes investigated.
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Conclusions: Limited experimental human evidence on the effects of physiological deficits relevant to CO kinetics
exists to support indoor air CO guidelines. Both experimentation and modeling are needed to assess how physiological
deficits influence the CO-COHb relationship, particularly at sub-acute exposures relevant to indoor environments. Such
evidence would better inform indoor air quality guidelines and CO management in indoor settings where susceptible
groups are housed.

Keywords: Carbon monoxide, Carboxyhemoglobin, Indoor air guidelines, Susceptible persons, Cardiovascular disease,
Chronic obstructive pulmonary disease, Anemia

Background
Carbon monoxide is a colorless, odorless and tasteless gas
produced from the incomplete combustion of carbon-
containing fuels such as natural gas, oil, and wood.
Common indoor sources include poorly maintained or
improperly vented appliances such as furnaces, fireplaces,
and gas stoves [1, 2]. Tobacco smoke and vehicles left
idling in attached garages or near open windows and
building air intakes also contribute to indoor concentra-
tions [1, 2]. Intentional and unintentional indoor CO ex-
posure is linked to substantial burden of disease
world-wide [3–5].
Carbon monoxide toxicity is primarily mediated

through hypoxic pathways, whereby CO molecules
displace oxygen (O2) and bind to hemoglobin to form
carboxyhemolgobin (COHb) [1, 6]. The concentration of
COHb increases with concentration and duration of ex-
posure. The increased presence of COHb in the blood and
the resultant leftward shift in the O2 dissociation curve re-
duces O2 transport to and transfer at tissue sites. Other
heme-containing molecules, such as myoglobin, are simi-
larly affected [2, 7]. Organs with the highest metabolic de-
mand, such as the heart and brain, are most sensitive to
CO-induced tissue hypoxia. Less is known about non-
hypoxic pathways of CO toxicity [1]. Among other direct
effects, CO has been shown to activate immunological
responses by interfering with nitric oxide (NO) production
[8]. Clinical symptoms associated with the hypoxic effects
of mild exposures are typically non-specific, and can in-
clude headache, nausea, and dizziness, while severe expo-
sures, also called CO poisonings, can result in
disorientation, unconsciousness, and cardio-respiratory ar-
rest [1, 7]. Persons with cardiovascular (CVD) are
considered most sensitive to CO exposure.
We undertook a review of indoor air guidelines for

CO and their relevance to indoor settings that house
susceptible persons following a CO poisoning incident
that led to the evacuation and treatment of 24 occupants
from one wing of a long-term care facility in Saskatch-
ewan, Canada. Three of the evacuated residents died
within a month of the incident. All three were elderly,
with pre-existing co-morbidities, and CO was listed as a
contributing factor in each death [9]. A power company

technician was called to the facility on the morning of
December 26, 2010, after several occupants reported ex-
periencing headaches, dizziness and nausea overnight
and throughout the previous day [10]. The technician
measured CO concentrations of 63 ppm in the affected
wing, triggering an evacuation. An investigation of the
facility revealed the source to be a faulty boiler that had
emitted CO into the ventilation system, which was then
distributed to occupied spaces in the affected wing [10].
Carbon monoxide detectors were not required in the
facility at the time of the incident and there were no spe-
cific provincial or municipal regulations requiring their
use. Based on the data collected by the power company
technician, which may underestimate true exposures
since the facility was ventilated prior to their collection,
we assume that concentrations in the facility would not
have triggered CO detectors, which are designed to
alarm at CO levels considered to be immediately hazard-
ous to health [11]. This incident shows the serious
consequences of indoor CO exposure among susceptible
persons, even at levels below those that may be
considered immediately hazardous.
The World Health Organization (WHO) recommends

that indoor air not exceed CO concentrations of 86 ppm,
30 ppm, 9 ppm, and 6 ppm for exposure periods of
15-min, 1-h, 8-h and 24-h, respectively. These guidelines
are intended for use in settings such as homes, offices,
schools, public buildings, and health care facilities [1].
Health Canada recommends that CO levels of 25 ppm
and 10 ppm not be exceeded over periods of 1-h and
24-h, respectively, in guidelines intended for residential
settings [12]. Similar methodologies were used to set
WHO and Health Canada guidelines. Both guidelines are
set so that short and long term exposures do not lead to
COHb levels above 2.0%. Derived from controlled human
exposure studies, this maximum acceptable level is based
on observed changes in exercise electrocardiograms in
subjects with ischemic heart disease. Both sets of guide-
lines also used the Coburn-Forster-Kane (CFK) equation
to model CO-COHb relationships. This non-linear
equation uses physiological parameters that influence CO
uptake and elimination and COHb formation, such as the
diffusing capacity of the lungs, alveolar ventilation rate,
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blood volume, and partial pressure of O2 in the pulmonary
capillaries [1, 12, 13]. Health Canada’s guidelines were
based on an adapted CFK model that includes additional
parameters to account for CO in alveoli and CO-bound
heme proteins in extravascular spaces [14]. All modeling
scenarios were based on physiological parameters relevant
to healthy adults, and as such, the setting of both WHO
and Health Canada guidelines did not consider the role of
physiological deficits on CO-COHb relationships.
We hypothesized that six groups in particular may be

at increased risk of adverse effects: persons with COPD,
anemia, cerebrovascular disease (CBD), heart failure,
multiple co-morbidities, and persons of older age (≥
60 years). COPD is characterized by lower diffusion cap-
acity, greater alveolar dead space, and a higher degree of
air trapping, all of which can decrease CO elimination
[1, 6]. Additionally, persons with COPD may have
secondary polycythemia [15], which can increase en-
dogenous CO production. Persons with anemia have
lower hemoglobin concentrations, which leads to less O2

binding to hemoglobin and therefore, lower blood O2

content. Additionally, persons with hemolytic anemia
have higher baseline COHb levels due to higher rates of
endogenous CO production that result from increased
heme catabolism [1, 6, 16], and persons with sickle cell
anemia may have increased alveolar dead space due to
impaired pulmonary capillary perfusion [17]; both condi-
tions would increase sensitivity to CO. Finally, decreased
diffusing capacity, arterial degeneration and other circu-
latory changes among persons with heart failure, cere-
brovascular (CBV) disease, persons of older age, and/or
multiple co-morbidities can lead to lower baseline O2

content, and in some cases, a reduced capacity to vaso-
dilate in response to increasing CO exposures [1, 6, 18–
20]. The objective of this review was to investigate evi-
dence on the kinetics of COHb formation as a joint
function of CO exposure and altered uptake, distribu-
tion, and elimination of CO and O2 in these groups, as
well as in healthy persons and persons with CVD.

Methods
We reviewed experimental studies in humans investigat-
ing relationships among CO, COHb, and outcomes in
healthy persons, persons with CVD, and six additional
susceptible groups: persons with COPD, anemia, CBD,
heart failure, multiple co-morbidities, and persons of
older age (≥ 60 years). Our intention was to capture all
potential susceptibilities relevant to persons residing in
long term care facilities. We selected susceptible groups
based on (i) initial review of the rationale for indoor air
quality guidelines for CO developed by the World
Health Organization [1] and Health Canada [12], and
ambient air quality criteria for CO developed by the U.S.
Environmental Protection Agency [6], and (ii) expert

consultation [21]. Our main objective was to review
studies investigating CO-COHb relationships, but to
capture all relevant information, we also reviewed stud-
ies investigating CO-COHb-outcome or COHb-outcome
relationships. An outcome was considered to be any
measured variable that could act as a surrogate for
CO-related morbidity or mortality, including exercise
duration, increases to cardiac output or heart rate, and
cognitive effects. We identified articles though EBSCOhost
(to access MEDLINE, CINAHL, PsycINFO, Biomedical
Reference Collection, and Academic Search Complete),
Ovid (to access Elsevier Science Direct, Evidence Based
Medicine, SAGE journals online, and Cochrane Database
of Systematic Reviews), and Google Scholar (to access
books, book chapters, older articles, and articles from
journals not indexed through major database platforms).
We used broad keywords: “carboxyhemoglobin” or
“carboxyhaemoglobin” and “carbon monoxide”.
The search was restricted to English language articles

using an experimental study design. No date restrictions
were imposed. We reviewed abstracts of studies to ex-
clude those involving the investigation of smoking- or
occupationally-related CO exposures. Additional
research studies were identified by reviewing article
bibliographies. The search was completed in March 2017.

Results
Our search identified 2394 articles, of which 54 were
retained, after the removal of duplicates, implementation
of inclusion/exclusion criteria, and manual review of ab-
stracts (Fig. 1). All of the studies were published between
1946 and 2016. Only ten studies were published since
2000, with the majority (27) having been published

Fig. 1 Summary of review process
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between 1970 and 1990. Most studies involved healthy
adults, predominantly young males (31) [22–50], and
persons with cardiovascular disease (20) [51–70]. One
study was conducted among persons with COPD [71],
one was conducted among persons with disease-related
anemia [72], and one among healthy older persons (aged
≥60 years) [73]. We found no studies conducted among
persons with CBD, heart failure, or multiple
co-morbidities.
Six studies investigated CO-COHb relationships [23,

27, 35, 36, 41, 42]. All of the studies were controlled ex-
posure studies where subjects were exposed to a known
CO concentration over a given time period, and the
resulting COHb levels were measured during and/or
after the exposure period. Exposures varied from
12 ppm for 48-h to 6683 ppm for 3–7 min. All stud-
ies but one included only healthy males ranging from
20 to 42 years [23, 27, 36, 41, 42]. Hauck and Neu-
berger [35] included a 10-year old female subject, in
addition to three male subjects aged 22–36 years. In-
dividual clinical and exercise-related factors that
might have impacted COHb formation were not
assessed or received little attention in all of these
studies. In the earliest study, Forbes et al. [23] re-
ported that CO uptake increased with physical work
and duration of exposure. The remaining five studies
evaluated the CFK equation against measured COHb
levels [27, 35, 36, 41, 42].
Forty-nine studies investigated CO dynamics to under-

stand the relationships between COHb concentrations
and specific outcomes. One study ([36]) investigated
both CO-COHb and COHb-outcome relationships. All
but two studies used a double-blind crossover design
where subjects were exposed to filtered air to establish
low baseline COHb levels, followed by exposure scenar-
ios corresponding to those required to reach target
COHb levels of interest. Scenarios typically involved high
exposures over short periods (e.g 7500 ppm for 1 min) or
lower exposures over longer periods (e.g. 36 ppm over
4 h). In most studies, no rationale was provided for the
exposure scenario or target COHb level of interest.
Additionally, the focus of the studies was on observation
of the effects of the target COHb levels, and no studies
reported the duration of effects. Two studies used non--
controlled exposures [47, 53]. Thomassen et al. [47] ex-
posed seven subjects sitting in a tent to CO generated
from a camp stove. Continuous CO measurements were
collected throughout the 2-h study period and venous
blood samples were collected every 15-min. Aronow et al.
[53] investigated outcomes after subjects were exposed to
freeway air while sitting in a car for 2 h; mean (standard
deviation) CO concentrations were 47 (8) ppm, compared
with scenarios where subjects were exposed to filtered air
for 2 h [53].

The exposure scenarios differed greatly among the
subject groups studied. Table 1 summarizes CO in air
levels and durations, and resulting mean COHb levels
for studies investigating toxicokinetic and toxicodynamic
relationships. Differences in study design, including the
exposure scenarios investigated, small sample sizes, as
well as lack of reporting of baseline COHb levels limit
comparisons of findings between studies, however, some
comparisons are possible. Five studies investigated CO
exposures of 100 pm CO for 1-h. Three of these studies
were conducted among subjects with CVD (n = 24, 30,
41) [59, 63, 65], one was conducted among healthy
subjects (10) [31], and one among subjects with COPD
(n = 10) [71]. The mean change in COHb from baseline
to post-exposure was highest in a study conducted in
subjects with COPD (2.6%), compared with healthy
subjects (2.3%) and in subjects with CVD (1.5, 2.1, and
2.4% for the three studies). Additionally, two studies
which were conducted among subjects with CVD (n =
15) [58] and anemia [72] investigated CO exposures of
50 ppm for 1-h, (n = 10). The mean change in COHb
was higher in the study conducted in subjects with
anemia (1.2%) compared with that conducted in subjects
with CVD (0.9%).
The outcome measures studied also varied by clinical

population. In healthy subjects, outcome measures included
exercise performance, cardiac function (e.g. changes to car-
diac output, heart rate, and electrocardiogram tests), re-
spiratory response (e.g. lung capacity, minute ventilation),
and nervous system response (e.g. cognitive function,
behavioral impairments). For subjects with CVD, the most
commonly assessed outcome was exercise-induced angina.
Exercise performance was the only outcome investigated in
subjects with COPD and anemia, and cognitive function
was the only outcome investigated in older persons
(Table 2). The lowest level for which any effect was ob-
served was at 2%. At this level, a decrease in mean length
of time to a threshold ischemic ST-segment change and
decreased time to onset of angina was observed among
persons with ischemic heart disease. The relationship
between COHb levels > 2% COHb and outcomes were
investigated for our additional groups of interest.

Discussion
We reviewed evidence from 54 peer-reviewed experi-
mental studies in humans investigating relationships be-
tween CO concentrations in air, COHb levels, and
outcomes among healthy persons, those with CVD, and
an additional six susceptible groups. Few studies have in-
vestigated the toxicokinetics of CO. Only six of the 54
studies identified in our search measured the relation-
ship between CO exposure and COHb formation, and
all six involved healthy participants. Since the objective
of five of the six studies was to compare COHb levels
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Table 1 Summary of carbon monoxide (CO) exposure levels and durations and corresponding carboxyhemoglobin (COHb) levels,
by health status
Exposure period Exposure

level (ppm)
Number
of subjects

Meana COHb (%) among
controls or during control
periodb

Meana COHb (%) among exposed
persons or after exposure

Mean increase in COHb
with exposurec (%)

Healthy subjects

1 min (5 exposures separated by
7 min each) [36]

7500 11 NR NR 2.05

3–6.65 min [42] 6683 ppm 15 2.08 (SD: 0.08) NR –

2.5–3.5 min [25] 5000d 10 NR 3.95 (SD: 1.87) –

5 min (× 5 exposures separated
by 3 min each) [36]

1500 11 NR NR 2.08

3–8 min [50] 3000d 12 NR 6.2 (SD: 0.3) –

10–30 min [45] 4000 12 NR 10 –

30 min [49] 500d 15 1.2 (SD: 0.5) 8.5 (SD: 0.9) 7.3

30–45 min [46] 1200 10 – 10 –

1 h 100 [31]d 10 1.67 (SD: 0.33) 3.95 (SD: 0.49) 2.28

500 [49]d 15 1.2 (SD: 0.5) 9.4 (SD: 0.6) 8.2

500 [48] 13 1.2 (95% CI: 1.0, 1.4) 7.0 (95% CI: 6.5, 7.7) 5.8

4 h [34] 35.7 30 1.5 (SD: 0.27) 3.03 (SD: 0.71) 1.53

74.1 30 1.3 (SD: 0.39) 5.1 (SD: 0.57) 3.80

10 days [33] 15d 15 0.5 2.4 1.90

50d 15 0.5 7.2 6.70

Susceptible groups

Subjects with cardiovascular disease

3–120 s [51] 50,000 25 0.98 8.96 7.98

50–70 min [61] 117 (SD: 4.4)d 63 0.6 (SD: 0.02) 2.0 (SD: 0.05) 1.4

253 (SD: 6.1)d 63 0.6 (SD: 0.02) 3.9 (SD: 0.08) 3.3

1 h 50 [58] d 15 1.09 (SD: 0.15) 2.02 (SD: 0.16) 0.93

100 [63]d 24 1.5 3 1.5

100 [65]d 41c 1.82 (SD: 0.06) 3.93 (SD: 0.07) 2.11

100 [59]d 30c 1.7 4.1 2.4

159 (SD: 25) [68]d 33c 0.7 3.2 2.5

200 [64]d 41 1.82 (SD: 0.06) 5.91 (SD: 0.07) 4.09

292 (SD: 31) [68]d 33c 0.7 5.1 4.4

1.5 h 53 (SD: 6) [53]d 10 1.12 (SD: 1.20) 5.08 (SD: 1.19) 3.96

100 [69]d 17 0.2–2.1 4.2 (SD: 0.3) –

2 h 50 [55]d 10c 1.03 (0.27) 2.68 (SD: 0.15) 1.65

50 [56]d 10 1.08 2.77 1.69

100 [69]d 17 0.64 3.91 3.27

142 ppm [39] 21 0.80 (SD: 0.20) 17.06 (SD: 1.38)

4 h [54] 50d 10 1.3 2.9 (range: 1.3–3.8) 1.6

100d 10 1.3 4.5 (range: 2.8–5.4) 3.2

Subjects with chronic obstructive pulmonary disease

1 h [71] d 100 10 1.48 4.08 2.60

Subjects with anaemia

1 h [72] 50d 10 2.14 (SD: 0.55) 3.38 (SD: 0.83) 1.24

Subjects of older age (> 60 years)

3 h [73] 50 36 1.30 2.77 1.47

aAdditional summary statistics provided where reported, including standard deviation (SD), range, and 95% confidence intervals (CI). COHb levels reported to the number of
decimal points reported in the original paper
bRepresents COHb levels after exposure to fresh/filtered air, or pre-CO exposure; NR = not reported
cCalculated as difference between pre (baseline) and post exposure COHb levels where values were reported. Dashed line (−-) indicates that not enough information was
available for calculation. The number of decimal points are presented to match values reported in the original paper
dExperimental conditions included exercise
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Table 2 Summary of lowest levels of carboxyhemoglobin (COHb) for which health outcomes have been described, by health status

Health outcome Lowest mean
COHb for measured responsea (%)

Associated CO
exposure

Response

Healthy subjects

Exercise-induced arrhythmias [44] 5 [44] 1000–3000 ppm
for 4–6 min

No effect.

Exercise duration [31, 32, 40, 50] 3.95 (SD: 0.49) [31] 100 ppm for 1 h Decrease in mean exercise duration from 698
to 663 s (p < 0.001).

Cardiovascular effects (cardiac output, heart
rate, artery diameter, electrocardiogram
changes) [25, 29, 33, 49, 89, 90]

2.4 [33] 15 ppm for
10 days
(continuous
exposure)

Electrocardiogram changes, specifically to
p-waves, observed among three out of 15
subjects.

Respiratory effects [22, 25, 36, 45, 46, 89, 91] 3.95 (SD: 1.87) [25] 5000 ppm for
2.5–3.5 min

Decrease in mean (sd) inspiratory capacity from
3655 (415) ml to 3380 (419) ml (p < 0.05), and
total lung capacity from 7705 (1083) ml to
7545 (993) ml (p < 0.02).

Cognitive function [24, 26, 28, 34, 37, 38, 43, 47] 5.1 (SD: 0.57) [34] 74.1 ppm for
4 h

Decreases in performance of visual tracking
exercises among high exposure group,
compared with low exposure and control
groups (p < 0.01).

Cytokine production [48] 7 (95% CI: 6.5,7.7) [48] 500 ppm for 1 h No effect.

Visual function [39] 17.06 (SD: 1.38) [39] 11,569 ppm for
4–5 min,
followed by
141 ppm for 2 h

No effect.

Susceptible groups

Subjects with cardiovascular disease

Exercise-induced angina [53–55, 58–63, 66, 70] 2.0 (SD: 0.05) [61] 117 ppm for
50–70 min

Decrease in mean (sd) time to onset of angina
from 501 (25) seconds to 482 (22) seconds
(p = 0.054).

Exercise-induced arrhythmias [54, 61, 64,
65, 67–69]

5.91 (SD: 0.07) [65] 200 ppm for 1 h Higher frequency of single premature
ventricular contractions per hour during
exercise among subjects (p = 0.03).

Other cardiovascular effects [51, 52, 61, 66, 69] 2.0 (SD: 0.05) [61] 117 ppm for
50–70 min

Decrease in mean (sd) length of time to a
threshold ischemic ST-segment change from
576 (27) seconds to 510 (26) seconds
(p < 0.0001).

Cognitive function [57] 3.90 [57] 100 ppm,
duration not
reported

Decrease in mean performance of visualization
test (p < 0.001), but no effects on performance
of speed, flexibility, digit symbol, time
perception, or reaction time tests.

Exercise-induced claudication (impairment,
pain discomfort in legs) [56]

2.77 [56] 50 ppm for 2 h Decrease in mean (sd) exercise time until onset
of intermittent claudication from 174 (49) to
144 (38) seconds.

Subjects with chronic obstructive pulmonary disease

Exercise performance [71] 4.08 [71] 100 ppm for 1 h Decrease in mean (sd) exercise duration from
219 (48) to 147 (28) seconds (p < 0.001).

Subjects with anemia

Exercise performance [72] 3.38 (SD: 0.83) [72] 50 ppm for 1 h Decrease in mean (sd) exercise duration from
221 (72) to 217 (73) seconds (p < 0.0001).

Subjects of older age (> 60 years)

Cognitive function [73] 5.0 [73] 200 ppm for 1 h
and 50 ppm for
2 h

No effect.

aAdditional summary statistics provided where reported, including standard deviation (SD), range, and 95% confidence intervals (CI)
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predicted by the CFK model with measured levels
following controlled exposures, few physiological parame-
ters important to CO-COHb relationships were investi-
gated. As for toxicodynamic studies, limited between-study
comparison of CO-COHb levels is possible, taking into ac-
count pathophysiology. A higher mean increase in COHb
from baseline to post-exposure was reported in a study of
persons with COPD, compared with four studies of healthy
persons or persons with CVD, at an equivalent CO expos-
ure of 100 ppm for 1-h. Similarly, a higher mean increase
in COHb was reported in a study of persons with anemia
compared with a study of persons with CVD, at an equiva-
lent CO exposure of 50 ppm for 1-h. Although findings
from these studies cannot be directly compared for several
reasons, including differing baseline COHb levels, the lack
of subject-level data, and small sample sizes, the limited
evidence does suggest that higher COHb levels may occur
among some groups, likely due to underlying pathology,
compared with healthy persons (or persons with CVD) at
equivalent CO exposures. As we hypothesized, specific
physiological deficits such as increased air trapping and
greater alveolar dead space may increase CO absorption,
decrease CO elimination, and/or increase COHb forma-
tion. Currently, WHO and Health Canada do not consider
differences in toxicokinetics between susceptible groups in
setting CO guidelines for indoor air, and instead assume
that CO-COHb relationships estimated based on parame-
ters reflecting those of healthy adults are representative of
the entire population. These limited findings suggest that
this may not be the case, and highlight the need for
more evidence on CO-COHb relationships in
susceptible groups.
Although experimental studies can allow for direct

measure of CO-COHb relationships, there are limitations
to the evidence these studies can provide. It is unethical to
expose people to harmful CO levels, particularly over long
periods of time. Additionally, it may not be appropriate to
extrapolate findings on acute exposures to guidelines
intended to protect persons from the effects of longer-
term CO exposures, such as those intended for 24-h
periods. An alternative to experimentation is the use of
models that predict CO-COHb relationships. The use of
models based on physiological deficits relevant to this re-
lationship over a range of exposure scenarios can allow for
a fuller understanding of CO-related susceptibility. Several
empirical and mechanistic models have been developed to
estimate the uptake and distribution of CO [74], including
the widely used CFK equation [13, 75]. Other researchers
have adapted the CFK equation to include additional
physiological parameters in an attempt to more precisely
predict CO-COHb relationships. An example is the setting
Health Canada guidelines, which use an adapted CFK
equation that incorporates parameters to account for CO
in alveoli and CO-bound heme proteins in extravascular

spaces [14]. Fewer studies, however, have attempted to
model the effects of specific physiological deficits on
CO-COHb relationships [76]. Benignus and Coleman
2010 [76] used a whole-body physiological model, which
uses a form of the CFK equation, to simulate effects of
CO on exercise duration among healthy persons and
those with vascular disease at different exercise levels.
Stenosis of the left heart arterial supply was introduced to
simulate IHD, and stenosis of the cerebral arteries to
simulate reductions in brain flow. For simulations involv-
ing IHD, the authors reported that the largest reductions
in exercise duration were seen with the lowest severity of
ischemia and COHb concentrations. For simulations in-
volving reduced brain blood flow, a non-threshold effect
on brain metabolism was seen for any increase in COHb
levels when blood flow was reduced by more than 50%. In
their Qualitative Risk and Exposure Assessment for
Carbon Monoxide [77], the U.S. EPA used the CFK equa-
tion to model COHb levels in a simulated urban popula-
tion with coronary heart disease. The population was
assumed to be exposed to CO concentrations equivalent to
the 8-h ambient CO standard of 9 ppm. The COHb levels
in this population were estimated using a haemoglobin
distribution relevant to the general population as well as
an “anemic haemoglobin distribution” that was reflective
of persons with anemia [77]. The percentage of the popula-
tion with daily maximum COHb levels at or above 2%
increased from 5.3% to 8.2% when the anemic haemoglo-
bin distribution was used [77]. Modelling exercises such as
these can be used to provide an understanding of how vari-
ous sub-populations are affected under different CO ex-
posure scenarios, which would not be possible with
experimentation alone. Epidemiologic evidence can also in-
form our understanding of CO on susceptible persons, but
must be interpreted with caution. Limited evidence sug-
gests associations between 1 and 6 day ambient CO con-
centrations and increased emergency admissions for
persons with COPD and sickle cell anemia [78–81]. How-
ever, recent studies have also suggested that low level am-
bient CO exposures, typically below 5 ppm, may be
protective of some respiratory effects [82, 83]. More re-
search is needed to assess how sub-acute and chronic CO
exposures may affect these groups, including the mecha-
nisms underlying these effects.
The majority of the studies (92%) we accessed

attempted to characterize COHb-outcome relationships,
predominantly among healthy persons. It is well charac-
terized that the lowest COHb level at which an effect is
seen is 2%. However, the degree to which severity of dis-
ease impacts this relationship has not been investigated.
Additionally, equivalent sensitive outcomes, such as
changes in ECG readings, have not been investigated in
groups outside of those with CVD, making it difficult to
compare CO sensitivity between potentially susceptible
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groups. The lack of data on CO effects among persons
with multiple co-morbidities is also important, consider-
ing that individuals may have several conditions that po-
tentially increase their overall susceptibility to CO. For
example, persons with COPD are also likely to have
CVD [84] and to a lesser degree, anemia [85]. The exist-
ing literature is also limited in other ways. While many
studies reported mean COHb levels before and after CO
exposures among all study subjects, few provided
statistics on the distribution of COHb levels, including
standard deviations around the mean, ranges, or subject-
specific data. As noted earlier, study subjects consisted
mainly of young healthy males, and where female and/or
older subjects were included, reporting of results was in-
sufficient to allow for examination of the role of sex or
age on COHb-outcome relationships. Finally, much of
the existing literature was published over 20 years ago.
Improvements in measurement techniques have most
likely led to more accurate CO and COHb measure-
ments over time, and values reported in older studies
are likely less reliable.
This review was conducted following a CO incident

that was associated with three deaths in a long term care
facility. Provincial or municipal regulations requiring CO
detectors in Canadian health care facilities did not exist
at the time of the incident. CO detector use has been
shown to reduce CO poisonings in homes [86–88], and
extending their use to other indoor settings would be
beneficial, particularly where susceptible occupants are
housed. However, CO detectors are only intended to
prevent acute exposures at levels judged immediately
hazardous to health, and therefore, it would be advanta-
geous to consider ways to prevent low level exposures
through comprehensive CO management programs
based on education, prevention, and monitoring. In
Canada as elsewhere, certified CO detectors are ap-
proved to alarm at levels considerably higher than those
recommended by indoor air guidelines. Alarms are trig-
gered when a peak value of 400 ppm is reached within
4–15 min, 150 ppm is reached within 15–50 min and
when approximately 70 ppm is reached within 1–4 h
[11]. These values are considered equivalent to an
attained 10% COHb level, which is considerably higher
than the 2% level used to derive guideline values.
Certification and use of more sensitive detectors that
both display and alarm at CO concentrations in the
lower range would allow for better protection of the
health of susceptible occupants.

Conclusions
Our review of the experimental literature found that few
studies have examined CO-COHb relationships, and in
general, persons with COPD, anemia, CBD, heart failure,
persons of older age, as well as those with multiple co-

morbidities have largely been overlooked in the experi-
mental CO research. Indoor air guidelines, which are
largely based on limited experimental research on CO
toxicodynamics, do not take into account the potential
impacts of physiological deficits that alter CO uptake
and elimination as well as COHb formation.
Susceptibility-specific toxicokinetic modelling is needed
to better understand how CO-COHb relationships differ
among susceptible groups. This information in turn, can
better inform indoor air guidelines as well as CO man-
agement practices in indoor settings where susceptible
persons are housed.
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