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Abstract

In tasks that demand rapid performance, actions must be executed as efficiently as possi-

ble. Theories of expert motor performance such as the motor chunking framework suggest

that efficiency is supported by automatization, where many serial actions are automatized

into smaller chunks, or groups of commonly co-occuring actions. We use the fast-paced,

professional eSport StarCraft 2 as a test case of the explanatory power of the motor chunk-

ing framework and assess the importance of chunks in explaining expert performance. To

do so, we test three predictions motivated by a simple motor chunking framework. (1) Star-

Craft 2 players should exhibit an increasing number of chunks with expertise. (2) The pro-

portion of actions falling within a chunk should increase with skill. (3) Chunks should be

faster than non-chunks containing the same atomic behaviours. Although our findings sup-

port the existence of chunks, they also highlight two problems for existing accounts of rapid

motor execution and expert performance. First, while better players do use more chunks,

the proportion of actions within a chunks is stable across expertise and expert sequences

are generally more varied (the diversity problem). Secondly, chunks, which are supposed to

enjoy the most extreme automatization, appear to save little or no time overall (the time sav-

ings problem). Instead, the most parsimonious description of our latency analysis is that

players become faster overall regardless of chunking.

Introduction

Performance timings of motor behaviour are suggestive of higher level processes that control

entire sequences (i.e., ‘chunks’, e.g., [1–3]). These chunks have often be used as an explanation

for performance improvements during learning. For example learning curves have been

explained in terms of the acquisition of these chunks by several researchers [4–7]. Critically,

chunked sequences are advantageous for performance because chunks are executed quickly

[8], and because automatization frees up cognitive resources for higher-level processing [9,

10].
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Our understanding of motor chunks comes from a number of laboratory-based tasks, such

as the discrete sequence production task [11], in which participants are taught sequences, and

the timings of constituent actions are then explored. While much research has been done on

motor chunking in the laboratory, little has been done outside it and so the relationship

between learning and chunking in more naturalistic tasks is unclear. Further, in most labora-

tory situations, participants’ goals are entirely structured around producing the small number

of sequences quickly, and there is little else for them to do. To what extent chunking is related

to learning in more complex tasks where sequences might not repeat as often, or be the exclu-

sive focus of the participants is also unknown. Most of the recent evidence on chunking and

hierarchical control in natural performance comes from typing [8, 12–14]. As a task, typing is

a natural one to study as it is prevalent outside the lab, and performance timings can be easily

studied. Because words are naturally thought of as chunked sequences of letters, however, the

importance of chunks is possibly exaggerated in these domains. Additional study of chunking

in naturalistic contexts is therefore warranted.

Importantly, the Big Data age has afforded cognitive science new avenues for evaluating

psychological theory [15]. Video games, in particular, have shown to be a useful domain for

examining learning outside of the laboratory [16]. Digital archives left behind by thousands of

gamers of varying skill has allowed researchers to quantify the extent to which expert-novice

comparisons could prove misleading [17] and to identify age-related changes predicted by the-

ory [18]. More recent work has even begun to use such datasets to examine motor-chunks

[19], highly practiced sets of actions that a person can execute with the same ease that they can

execute individual actions. However, naturalistic task environments are complex, and this has

compelled the prior research to make strong assumptions in their detection of motor chunks,

such as the assumption that chunks could be indexed by attentional shifts. The present work

takes a more theoretically neutral approach, and utilizes a new chunk detection method to test

see how the diversity of motor sequences, and their latencies, change with expertise.

The goal of the present study is to investigate chunking in a naturalistic and complex cogni-

tive/motor task. We document the prevalence of chunks in such a domain, StarCraft 2, and

their impact on performance timings as expertise increases. Our approach was to generate pre-

dictions from a simple account based on broadly supported principles, and ask, to what extent

is a simple account of motor chunking sufficient to explain expert performance timings. The

extent to which, and then manner in which, this account fails will be instructive for more com-

plex theories of motor chunking and performance timings in sequence learning. Finally,

regardless of the implication for particular theories, our research expands the set of naturalistic

domains in which motor chunking has been studied, providing important descriptive data.

To achieve our research goals we need meet three requirements. First, we need a task

domain in which sequences of actions can be recorded with precise timings, and one in which

chunks might be naturally relevant to, and beneficial for performance. Second, we need to

develop a set of predictions from existing work on chunking. Finally, to enable us to test those

predictions, we need a method of detecting chunks in a stream of natural responses. In the

present work we evaluate action sequences using the digital records of real time strategy video

game StarCraft 2 and thus investigate a domain in which chunks are not the focus of the task

itself.

The utility of StarCraft 2 as a domain for studying chunking

StarCraft is a real-time strategy game. It is a strategic game like chess, except that players are

not required to take turns, do not have to wait for their opponent to move, and are not given

complete information about an opponent’s units. In this kind of game, making moves more
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rapidly and efficiently than one’s opponent is a huge advantage. Player screens view only one

selected portion of the board or map in detail at any time, but have access to gross information

on a miniature map in the corner of their screens. The goal of the game is to collect resources,

produce an army, and defeat the opponent’s army. Basic mechanics of the game involve using

the keyboard and mouse to (a) select units or structures and (b) direct their movements and

activities in order to further player goals.

One of the most appealing incentives to study games like StarCraft 2 is methodological. It

promises passive, non-invasive, and ethical data collection. In StarCraft 2, every action that

impacts the game is automatically collected during play in a timestamped list. Players of all

skill levels thus leave behind a digital trace of their performance by simply participating in

their domain of excellence. Furthermore, eSports such as StarCraft 2 contains professional

players with full time careers, who are sponsored by major corporations and compete for sig-

nificant prize purses. These ambient telemetry data can bridge the laboratory and the real

world in unprecedented ways.

StarCraft 2 is a near perfect domain in which to study motor chunking. To start, rapid exe-

cution is paramount and the drawbacks of automatic performance (e.g., [20]) are few. Much of

this game, where the goal is to destroy a human opponent’s army through the management

and command of one’s own resources, revolves around the game mechanics of managing a

civilization’s economy, producing an army, and overseeing the movements of game units. Star-

Craft 2 should greatly favour the use of highly automatized sequences of behaviour. Prior work

has shown that the game favours speed greatly [17, 18]. This makes sense as faster players are

able to issue more strategic commands (resulting in a more efficient economy and better posi-

tioned army). Relying on motor chunks in StarCraft 2 play provides important speed benefits

at little strategic cost. Further, games of StarCraft 2 produce a timestamped record of actions

each player provides, and so provides the measurements of the timings of actions that are

equivalent to data from the laboratory. Finally, StarCraft 2 is a domain the authors of the pres-

ent work know very well. Dr. Henrey was a master league player, and all other authors were

gold league or better. In the course of our previous research [17, 18, 19] we have interacted

with players of all levels in the StarCraft 2 community and discussed expert play with profes-

sional players. This expertise allows us to temper our interpretations of data with deep domain

knowledge, and also temper our domain intuitions with a deep familiarity with the relevant

data. By using StarCraft as a domain, we thus avoid some of the pitfalls of interpreting big data

in domains of only moderate familiarity.

General predictions from the Motor Chunking Framework about chunk

use and acquisition

The second requirement for our study is that we generate some expectations about what

should happen to actions timings as a result of the accumulation of motor chunks. One prob-

lem is while there are many commonalities amongst the theoretical ideas surrounding chunk-

ing, there are also many differences. For example, classic theories of automaticity allow for

individuals to switch to deliberate processing [5], and recent applications of motor chunking

theories to typing performance allow for interruptions even at the highly automatized level of

the keystroke [14]. Other frameworks allow for a variety of speedy motor-execution strategies,

making it problematic to think of chunks as the unitary sources of expert speed [21]. While

such accounts may indeed make predictions about actual performance outside of the labora-

tory, the present state of research in StarCraft 2 is at too early a stage for us to make suitably

specific predictions. For example, Verwey and colleagues [21] argue that motor-representa-

tions (chunks), perceptual-representations, and even verbal-representations can potentially
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give rise to speedy performance. However, there is currently no method for parsing out

whether a behaviour occurring in natural StarCraft 2 performance was brought about by a

motor or spatial representations, or whether a particular speed gain is primarily due to changes

in the motor system. Chunks, for the purposes of this investigation, are automatized sequences
(i.e.,motor-chunks) of commonly used actions in a task. This definition has broader relevance

than prior definitions of ‘chunk’ in StarCraft 2, where chunks were just behavioural sequences

falling between shifts of attention [19]. The broad definition fits with a broader reading of the

literature on reaction time [8], neuropsychology [22, 23], and computational modelling [24].

We derive a simple theory of chunking from this literature which we call the motor-chunking

framework (MCF).

It is worthwhile seeing how the MCF would construe the skill development of a hypotheti-

cal player. To play StarCraft 2 well, players must habitually cycle through actions pertaining to

building their economy, training their army, and positioning their army. Initially, the beha-

vioural sequences associated with basic game functions, such as training a basic fighting unit,

should be variable (see Novices from Fig 1). This level of skill would be akin to the ’hunt and

peck’ method of novice typists, where each keystroke involves a search [8]. Our hypothetical

player remembers doing each game operation in a variety of ways so, when its time to train a

fighter, a ‘race’ between these memories might decide which sequence can be most speedily

executed [5]. However, after some experimentation with various methods for training fighting

units (e.g. by using the mouse or some combination of mouse and keyboard), it becomes clear

that the most efficient is to assign their production structures to a number key (HotKey) so

that these structures can be selected with a single keystroke (HotKeySelect), followed by a sec-

ond keystroke which initiates the structure to train a unit.

Of course, even these ‘HotkeySelect-Train’ keyboard sequences are sluggish at first. The

player must recall which number key selects relevant production structures to which keys will

order the structures to train a unit. But this sequence should eventually be chunked and

automatized (See the ‘BC’ sequence of intermediate players depicted in in Fig 1; [9, 10]. On

Fig 1. The motor chunking framework (mcf) description of expert performance as chunk accumulation. In the novice, actions are preceded by cognitive-motor

planning. As action sequences are unitized into chunks, planning is done at the beginning of sequences only, thus saving time on subsequent actions and producing the

well-established timing pattern within chunks of slower first actions and faster subsequent actions. As expertise accumulates, chunks increase in size and number, taking

up a larger and larger proportion of the actions produced, further speeding performance.

https://doi.org/10.1371/journal.pone.0218251.g001
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one specific account, one process (the ’outer loop’) need only decide to train a fighting unit,

and an independent processes (the ‘inner loop’) will take care of the required keystrokes [12].

Most importantly, the MCF predicts that all the basic game functions of StarCraft 2 (which

mostly involves training units, building economic and military structures, commanding the

army to move, and commanding the army to attack) will eventually be dominated by a rela-

tively small number of specific behavioural sequences (see expert skill level, Fig 1). This is

because every execution of an already efficient behavioural sequence further contributes to its

automatization, purchasing an even larger speed advantage in future races. Thus the StarCraft

2 player, according to the MCF, uses chunking to greedily save time whenever possible, replac-

ing slower and more deliberate sequences with automatized chunks.

We begin from the notion that the MCF will play a major role in the explanation of skilled

StarCraft 2 performance. This directly leads to three predictions that might be harder to

deduce from more nuanced chunking theories 21A e.g., 19]. The first two predictions are rele-

vant to the diversity of motor sequences while the third prediction speaks to performance

latencies. According to our first prediction, with expertise, StarCraft 2 players should exhibit

an increasing number of chunks (See Fig 1) because these are a source of speed, consistency,

and accuracy.

The second prediction of the MCF is that chunks will replace more clumsy and variable

attempts at performing basic actions. That is, the proportion of actions that fall within chunks

should increase with skill (See Fig 1). Prediction 2 follows from the MCF because, for any

given game mechanic, such as training a unit, a player should be able to more efficiently

accomplish this action by replacing deliberately controlled behavioural sequences with

chunks.

The third prediction from our application of the MCF to StarCraft 2 is that chunks save

players a lot of time. There are three reasons why. First, the automatized sequences in basic

laboratory typing tasks are faster [8], and this is true both for the relatively sluggish first actions

of keystroke sequences, which are thought to reflect costs emerging from multiple levels of

control [12], and for the latencies following the first action (in keyboarding tasks this is usually

called the inter-keystroke interval, [14], which reflect processing of the ’inner loop’ except in

cases of interruption [13]. Secondly, this automatization is thought to free up cognitive

resources for higher-level planning [9, 10]. In a complex task this could save time by alleviating

the need to plan under dual-task constraints. Finally, it’s expected that players undergo some

exploration into the possible ways of performing StarCraft 2 functions. In a genuine domain of

expertise such as StarCraft 2 (which is played professionally and for which there is dedicated

training), it’s expected that players are trying to improve [25], and will therefore intentionally

avoid automatizing highly inefficient methods for performing basic game functions. The

chunks chosen by experts, therefore, are also likely to be better methods for completing the

task.

Finding chunks in StarCraft 2 data

The final requirements of our study is to be able to identify chunks in the actions and timings

of StarCraft 2 players. While our specific method of detecting chunks is described in full in the

Method section, it is worthwhile to give the reader a general idea of how this is to be done.

There are several existing current chunk detection algorithms (e.g., [26, 27]) that classify

chunks based on the structure of performance timings, and therefore already assume that

expert speed of performance is derived from rapidly performed sequences. Given that we are

dealing with a complex, naturalistic task, we want instead to be open to the possibility that

such speeds are due to other sources, such as the reduction in cognitive load as other theories
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would predict. We therefore construct our chunk-detection algorithm around the assumption

that experience with a motor sequence (i.e., prevalence) is a primary source of automaticity

and chunk acquisition [5]. This will allow us to independently test our algorithm against data

on performance timings and to ask questions about performance latencies. Our most impor-

tant research questions will also be addressed using converging analyses that do not rest on this

algorithm.

2. Methods

Participants

3,330 StarCraft 2 players submitted a usable replay file of a one-on-one StarCraft 2 game. Par-

ticipants also filled out surveys providing demographic information and character codes. The

latter was used to verify player league (coded as 1–7 from least to most skilled in our dataset).

55 additional professional replays (coded as 8 in our dataset), were acquired from publicly

accessible replay hosting websites. Initially replay files are in an unreadable proprietary format.

Replays were then parsed with the SC2Gears [28] software into a series of timestamped actions

and uploaded into a series of MySQL tables. Importantly, our conclusions are only expected to

generalize to men, as only 0.9% (29 individuals) of the sample were women. The mean age of

the sample was 21.6 (sd = 4.2). Both the present study and the collection of the raw digital

archives received ethics approval through the Office of Research Ethics at Simon Fraser Uni-

versity (2011s0302), and all participants gave informed consent and digital game records

through an online survey. The entire procedure was performed in accordance with the ethical

standards laid down in Canada’s Tri-Council Policy Statement.

Task

StarCraft 2 is methodologically ideal for several reasons. First, this method allows for fine

grained measures of performance. Second, StarCraft 2 is a domain where rapid behaviour, and

presumably chunking, is extremely adaptive. Third, Starcraft 2 is a domain that supports genu-

ine experts with full-time practice regimes, and so data can reflect learning across thousands of

hours of practice. Finally, while StarCraft 2 is like typing in emphasizing efficient performance,

it is quite different as well. Behavioural sequences in StarCraft 2 are not organized into words,

as in typing, which means that StarCraft 2 may not exaggerate the role of chunking. Further-

more, StarCraft 2 performance differs from typing in that it requires strategic thinking and

management of dual-task demands [19].

Action typology

The three predictions we wanted to test required an algorithm to identify chunks in StarCraft

2. In StarCraft 2 replay data, we extract a game record comprising all actions the players took

and the time at which they were logged by the game engine. These data are classified in such a

way as to allow the StarCraft 2 game engine to replay the game exactly. Importantly, this classi-

fication has face validity insofar as it will be familiar to StarCraft 2 players as actions they chose

to take, such as constructing a building at a particular location, or selecting a particular unit.

In total, we classify players’ actions into seven types:

1. Select: Players use the mouse to select units they wish to control.

2. Hotkey Select/Assign: Players can assign a set of units to a keyboard number (0:9), or select

a set of units using a previously assigned hotkey.
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3. Train: Players command a structure to train another unit. This is how players acquire

armies that can be used to wage war.

4. Build: Players command a unit to build a new structure. These structures are the basis of

the players civilization, and are required for building an army.

5. Right Click: A context-sensitive key. Can order units to move, attack a right-clicked target,

or collect resources.

6. Ability: A collection of less frequently used commands and special abilities, most of which

are restricted to one of the games unit types. See the supplementary materials of Thompson,

Blair, Chen, & Henrey [17] for a complete list of StarCraft abilities.

7. Screen Shift: Screen shifts represent attentional shifts. These actions were derived from raw

screen movement data as, much like gaze data, these are too numerous and chaotic for the

present analysis. Instead, we follow Thompson, Blair, Chen, & Henrey [17], and aggregate

screen movements into screen fixations using a Salvucci & Goldberg [29] algorithm. We

then treat a movement of the screen as a distinct action type for the purposes of our

analysis.

A player might have data a sequence like this: {Screen shift; select; train; hotkey select; right

click; right click; right click; ability}. The dataset that results is a timestamped list of actions

types in order of their initiation. This list is then processed to look for action sequences that

might be chunks due to their prevalence.

Prevalence-based chunk detection method

We designed an algorithm to extract chunks from veridical records of gameplay (see Thomp-

son, Blair, Chen, & Henrey [17] for additional information about the digital archives used)

from 3,385 StarCraft 2 game files, yielding 3,020 games indicated as containing potential

chunks and a final set of 802,853 chunked actions.

One source of complexity in identifying probable chunks by looking at sequence frequency

was that the base-rates of the 7 possible atomic actions are not equal in StarCraft 2 play, and so

some sequences might be frequent simply because their atomic components are more com-

mon. To address this, we considered base rates of the actions making up sequences. A

sequence was considered a chunk if it is more common than the base rates of the action types

in the sequence would suggest. That is, we asked whether sequences are occurring more often

than they should "by chance”. We borrowed a procedure to address the problem of uneven

base rates from the literature on machine learning and text mining [30]. We began by consid-

ering each of the 7 action types as one of 7 actions (“words”), and we found the corresponding

frequency of each word within the game. We divide these counts by the total number of

actions (we call this a) to get 7 marginal proportions (pAttack, pBuild, and so on), one for each

action type. We will considered as the null distribution the case where the player picks a word

at random a times to construct the text (or in our case, the set of actions that constitute that a

specific StarCraft 2 game).

We tested, for bigrams, trigrams, and four-grams, what the probability of attaining each n-

gram K times is (under our base-rate corrected null distribution). To avoid excessive multiple

testing, we limit ourselves to looking at a small selection that are motivated by the data itself.

We use the technique of data splitting [30]: we develop a list of viable sequences to test from

half of the data, and then test that list against the remaining half to ensure we don’t bias the

results.

The identification process follows the following steps:
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1. The first step in the algorithm is to create a test set and a train set of data, which we accom-

plish by dividing the game into non-overlapping bigrams (e.g. the sequence ’XYXY’ is

divided into the two bigrams ’XY’ and ‘XY’). Bigrams containing repeated ’Right Clicks’,

’Trains’, and ’Hotkeys’ are marked and dropped from the analysis. In StarCraft 2 data, these

actions are often found in long, uninterrupted, strings. These strings are potentially artifac-

tual in the case of ’Trains’ (holding down a single key can produce multiple train com-

mands the latency of which does not depend on the player) or unrepresentative of

meaningful Starcraft 2 behaviour in the case of ’Right Clicks’ and ’Hotkeys’ (both repeated

right clicks at the same location and repeated selecting of different unit groups have no

impact on the game but introduce abnormally low latencies).

2. We then distribute half the bigrams into a training and half into a test set, with n observa-

tions each. A game of 1,000 actions will therefore have 500 bigrams in total and 250 bigrams

in its training set.

3. In the training set, we then compute the p-value for the bigram. Suppose we observe a par-

ticular bigram K times. Under the null distribution described above, the p-value is probabil-

ity of observing this bigram at least K times if the player picked bigrams at random. Since

the training set has a fixed number of bigrams, the null distribution of the number of occur-

rences of our bigram has a binomial distribution. The parameters of our binomial null dis-

tribution are n = n and p = pipj, where pi and pj are the marginal proportions of the first

and second actions in the bigram.

4. We order the p-values from the test set and then take the bigrams with the lowest p-values

to the next stage with a limit of five. Since we have selected these bigrams through an opti-

mization procedure, we expect that these estimates of the p-values will be optimistic. There-

fore we discard the p-values generated from the training set and only move five bigrams

forward to the next step.

5. We compute a new p-value for each bigram identified in the training set using only the test

data and following the same approach above: determining the probability of observing each

bigram K times. Since this test set is uncontaminated by the optimization done in the train-

ing set, these p-values are reliable.

6. Any bigram which has a p-value of< 0.05 in the test set is considered to be a chunk. That is

to say, we believe the player was unlikely to generate this sequence at random, and thus con-

clude that it is an important sequence for that player.

7. We then repeat steps 1–7 using trigrams and four-grams.

8. Once we have a list of bigram chunks, we pass through the entire dataset, marking which

actions fall within a chunk. Actions falling within chunks, but which are preceded by

actions outside of a chunk, are labelled First Actions.

After the procedure is complete, we may have found up to 15 chunks (at most 5 each of

length two, three and four sequences). One limitation of any chunk-detection method is that

we may miss chunks. However, allowing for more sequences would lead to increased multiple

testing, which is also undesirable. We can therefore think of the maximum number of chunks

as a tuning parameter which reflects the tradeoff between trying to find true positives and

eliminate false positives.

There is reason to think that allowing a maximum of 15 chunks per game will provide a rea-

sonable balance of type I and type II error rates. First, each game contains hundreds, often

thousands, of actions which guarantees a large training and testing set. This allows us
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respectable power. Secondly, we selected a parameter setting such that the chunks highlighted

made sense given our knowledge of the game. This ensures that the chunks identified would

make sense to a competent StarCraft 2 player. Third, only about 3% of the games analyzed

reached the maximum of 15 chunks, suggesting that larger parameter settings would not result

in many more chunks. Fourthly, our per-test alpha of 0.05, while less strict than using a Bon-

ferroni family-wise correction, is stricter than Linkletter et al. [31], who argued that per-test

alphas of 0.1 are reasonable in the context of exploratory work.

Our decision to limit our analysis to sequences of length 2, 3, and 4 was largely based on

theoretical grounds. The primary methodological pursuit in this study is to describe the com-

mon behaviours in the game as they are experienced—and exhibited—by players. Through

observation of player performance, and through the authors’ own firsthand experiences in the

game, we recognize the importance of various action pairs (and trigrams, and four-grams) as

having particular value in executing sub-goals in StarCraft 2. A common method for creating a

building, for example, requires the player to select an appropriate worker, use the mouse to

select the ‘build’ command, and use the mouse to select the desired type of building, and finally

use the mouse to specify a location for the building. We hypothesized that expert players

would achieve their impressive speeds by cycling through a small number of such chunks.

Analysis strategy & key variables

Two of the key measures for the present study (the number of chunks, and the proportion of

actions falling within a critical sequence) directly follow from the identification of chunks. The

third key measure is time savings, which is derived by comparing action latencies of actions

within chunks to the latencies of actions that are not-chunked. That is, the time savings for

every action falling under a chunk is the difference between its actual latency and the mean

latency to perform non-chunked actions of the same type. Importantly, we did not hypothesize

that skilled players would have higher per-action time savings, as we expect that the automa-

tized novice and intermediate levels would also have chunks which reach asymptotic speeds.

Instead, we hypothesized that experts would have greater overall time savings because a larger

proportion of their actions would be chunked. We therefore find it more useful to report a

game’s overall time savings (i.e., the sum of the per-action time savings).

Importantly, our work contains both hypothesis driven and exploratory analyses. On the

one hand, our method of chunk-detection is intended to be used in a hypothesis driven man-

ner, with careful error control in mind. However, the complexity of the task domain means

that results will need to be interpreted carefully and many followup analyses will be necessary.

For example, we began with planned analyses that speak to our chunk-detectors validity and

then proceeded with planned analyses of the MCF’s three predictions. The predictions were

tested with a series of 8x6 ANOVAs with factors of League (eight levels) and StarCraft 2 Spe-

cies (six levels). However, where the MCF’s predictions were not observed we performed fol-

lowup analyses to clarify the nature of this predictive failure. A primary purpose of these

followup analyses was to establish whether our results were an artifact of the chunk-detector.

3. Results

We began by ensuring that our data contain expertise related changes in performance speeds.

Fig 2 shows decreases in average time taken to complete an action for each of the 8 skill levels.

The differences between skill levels that are clear in the figure were confirmed by statistical

analysis. The nuisance factor ‘player species’ is added to our ANOVA models as StarCraft 2

players must select their species prior to play, and this choice impacts some game mechanics

and, ultimately, a player’s average action latency (F(5,3178) = 126.65; p<2e-16; ηp
2 = 0.17; for
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additional details, see S1 Text). Most importantly, there was a significant main effect of league

(F(7,3178) = 421.49; p< 2.2e-16; ηp
2 = 0.481) on action latency, confirming that speed does

indeed change with expertise (also see Fig 2).

The present study asks, how much of performance improvements can be attributed to the

simple motor chunking account provided by the MCF. The decrease of action latencies in Fig

2 is thus the target of this explanatory account. Given these numbers, we can be more specific

about what the MCF would predict regarding the prevalence and time-savings of chunks in

StarCraft 2, if it were a complete account of performance improvements. Participants in our

lowest skill level perform an action in an average of 1019ms, and participants in our highest

skill level take only 234ms on average to perform an action. A theory of chunking thus has

785ms per action, and roughly 100ms of improvement per skill level to address. This is enough

data to allow us to get a rough sense of what a chunking explanation of player speed might

look like. If we estimate that chunks form about 10% of the actions at skill level 1, and about

80% of the actions at skill level 8, it would mean that a non-chunked action should take an

average of 1100ms, and a chunked one only 100ms (thus chunking saves 1000ms per action).

On this picture, every skill level increases the percentage of chunks by 10%, and thus decreases

the average latency by 100ms. This gives us numbers which are roughly similar to those in Fig

2. To the extent that a chunked action saves less than 1000ms, the MCF account will need to

posit a higher proportion of chunked actions to compensate. To the extent that chunks are less

prevalent (less than 80% at skill level 8), they each need save even more time. Of course there

Fig 2. Mean action latency by skill level. Mean action latency by skill level, where 1 is the least skilled. This pattern of speeded expert

performance is one of the empirical phenomena the MCF is attempting to explain.

https://doi.org/10.1371/journal.pone.0218251.g002
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may be other factors than chunking involved in the speedup of actions, and so we might find

that chunked actions are only 500ms, not 1000ms, faster than non-chunked actions; con-

versely, chunks might comprise only 40%, not 80%, of the actions of experts. In those cases we

could say that chunking accounts for roughly half of the obtained performance gains, and thus

provide some assessment of what additional factors, or more complex accounts motor

chunking.

After running our chunk-detection algorithm, only 365 players failed to have even one

chunk. For the rest of our discussion, we restrict our analysis to the 3,191 participants who had

actions that were at least nominated as potential chunks in the training set. Furthermore, most

players had a unique set of common sequences. Of the 587 unique chunks, the most common

was the bigram ‘Screen-shift—Select’, which was critical in 56% of the games. Of the unique

chunks identified, most were only identified in a handful of games (median = 4), though this

distribution was quite skewed (�x = 27.9; SD = 100.3).

To ensure that identified chunks exhibited established timing patterns, we defined ‘first

actions’ as the first action in a sequence of chunked actions. The first actions of chunks are

slower (�x = 720 ms; SD = 377) than inter-action latencies (�x = 563 ms; SD = 273; t(3019) =

-32.733; p<2e-16; 95% CI = 147.1 : 165.84 ms). The chunks we identified solely by the preva-
lence of the sequence (above chance) do bear the established timing patterns of chunks [2, 3].

Chunk prevalence and chunk diversity

Our first major finding is that better players rely on a different number of chunks, evidenced

by an ANOVA with League and Species to predict the number of critical sequences (F(7, 3178)

= 25.87; p<2e-16, ηp
2 = 0.054). There is a main effect for the domain-specific nuisance factor

player species (F(5,3178) = 51.55; p<2e-16; ηp
2 = 0.075). Planned comparisons confirm that

more skilled players tend to possess a few more common sequences in their behavioural arse-

nal (See Fig 3, S1 Table).

The second prediction of MCF is that chunks of actions will replace less efficient methods

for filling basic game functions, and thus, there will be an overall increase in the proportion of

actions falling within chunks. As expected, we identified a main effect of the nuisance factor

player species (F(5,3178) = 42.66; p<2e-16, ηp
2 = 0.062). However, we found no evidence that

proportions of actions falling within chunks changed with skill (F(7,3178) = 1.99; p = 0.053;

ηp
2 = 0.004). Indeed, chunks appear to take up about 20% of a game’s total actions regardless

of skill (Fig 4). As can be seen from planned comparisons reported in S2 Table, the proportion

of game actions taken up by common sequences appears to change little, if at all. Our first two

findings (an increase in unique chunks, but no change in the proportion of chunked actions)

suggest an increase in diversity with skill. This contrasts with the MCF’s prediction of increas-

ingly consistent performance, so we perform followup analyses to probe this predictive failure.

One possible concern with our analysis of prediction 1 and 2 is that they rely on our chunk-

detector. However, the MCF predicts that chunk proportions should increase with skill leading

to a net decline in the overall variability of behavioural sequences, and it is possible to directly

test whether the total number of unique behavioural sequences becomes compressed with

skill. If the diversity of behavioural sequences is not reduced with skill, as predicted by the

MCFs emphasis on replacing deliberate behaviours with automatic ones, this diminishes the

MCF as a viable explanation for expert performance.

One challenge in measuring the diversity of behavioural sequences is that, in the present

task-domain, skilled players will trivially have more unique sequences because they produce

more actions. Therefore, we sampled 200 actions before and after every game’s ten minute

mark, and calculated and summed the number of all unique length 2, 3, and 4 sequences.
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StarCraft 2 games vary in duration, and 690 games were dropped for failing to be suffi-

ciently long for 400 actions to be sampled, leaving us with 2501 games for a unique sequencing

analysis. The observed number of unique sequences increases with skill. However, a further

concern was that a greater number of unique sequences might be explained based on the dis-

tribution of action types for a given player (e.g. if players who often employ all of the 7 different

types of action will usually have more unique sequences than players who only use 5 types of

action). Furthermore, the distribution of action types vary somewhat from player to player and

league to league, and so we constructed, for every player, a simulation of the number of unique

sequences one would expect given their distribution of action types. This simulation will allow

us to see how much motor-sequence diversity should be expected given a players distribution

of action types and, consequently, it allows us a method for investigating motor sequence

diversity without relying on our chunk-detector.

Our simulation assumed a null distribution where players pick a random permutation of

their 400 actions. This is a reasonable facsimile of players choosing actions at random, while

maintaining each player’s marginal distribution of each actiontype. The goal is to compare the

number of unique sequences in random permutations of the actions to the number of unique

sequences actually found in the 400 in-game actions. The statistic is the sum of the unique

sequences of length 2, length 3, and length 4. For a sample S of 400 actions we call the statistic

S, and for the original game we call the statistic G.

To formally conduct a permutation test, we would need to simulate many different realiza-

tions from the null distribution for each player, compute S for each realization, and then find

the percentile where G falls. Unfortunately, for almost all of the players this percentile is

extremely hard to accurately assess because G is almost always much smaller than any

Fig 3. Chunk count by skill. The number of chunks by skill level, where 1 is the least skilled. Each grey point is one

game, and the shaded region shows the density of values. The black circle shows the mean value for each skill level.

https://doi.org/10.1371/journal.pone.0218251.g003
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corresponding S. This is because players aren’t picking actions at random. As a surrogate mea-

sure for a formal permutation test we construct instead the following statistic: we compare G

to the average of 100 samples of S, which we call mean(S), and take the difference. This new,

derived statistic, randomness, is large (negatively) when the player had few unique sequences

in the game, and close to zero if the player picked actions close to randomly.

We confirmed the finding of increasing diversity without relying upon chunk detection

(see Fig 5), using the difference between G and mean(S) instead. Better players exhibited a

greater raw diversity of sequences (F(7,2488) = 10.99, p<2e-16; ηp
2 = 0.03) rather than the

reduction in diversity predicted by the MCF. Player species was, again, a significant predictor

of diversity (F(5,2488) = 235.39; p<2e-16; ηp
2 = 0.32). Planned comparisons revealed no signif-

icant differences in diversity between the four lowest skill levels, but the higher skill levels

exhibited more diverse sequencing behaviour. For example, league 8 differed significantly

from skill levels 1–6, and league 6 differed significantly from league 1 (See S3 Table). In short,

the MCF fails to explain the increasing diversity of behavioural sequences in this domain. We

call this the diversity problem.

Time saved by chunks

In order to measure time savings, we compared chunked action latencies against non-chunked

latencies of the same action type. We find no evidence that chunked actions are faster than

non-chunked actions (Fig 6; T(3190) = 0.65; p = 0.59; 95% CI = -0.82 : 1.45), and only a weak

main effect of skill (F(7,3178) = 2.311, p = 0.02, ηp
2 = 0.005) and player species (F(5,3178) =

Fig 4. Proportions of actions chunked by skill. The percentage of actions that fall within chunks by skill level.

https://doi.org/10.1371/journal.pone.0218251.g004
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26.06, p< 2.2e-16, ηp
2 = 0.039). The majority of time gained by inter-action latencies appears

to be lost in slow first-actions (Fig 7). Furthermore, time savings is very weakly related to aver-

age action latency (T(3198) = -8.06; p = 1.05e-16; 95% CI = -0.175 : -0.107, r = -0.14). This

implies that as players save more time (i.e., their chunks become faster), raw action latencies

tend to get shorter (i.e., actions become faster overall). However, the strength of this relation-

ship is weak, accounting for about 2 percent of the variance in typical action latencies.

Recall that to explain the speed improvements from novices to experts our rough estimates

indicated that a chunking explanation requires substantial time-savings for chunks (roughly

1,000ms) and substantial increases in the proportion of a player’s actions that are chunked

(~10% more for each level of skill; a 70% increase overall). Less substantial contributions from

chunking would mean that chunking must share its explanation of speed gains with other

factors.

The present work shows that of the 785ms of skill-based speed improvements that need

explaining chunking explains none of it. We found that chunks do not make up nearly enough

of the actions to produce the required speed gains (expected, ~80%; obtained, ~20%), nor does

the proportion of chunks increase with experience (expected, 10% increase per skill level;

obtained, 0% increase per level). We also find no evidence that chunked actions are executed

faster than non-chunks (expected, 1000ms savings per chunk; obtained, 0ms savings per

chunk).

Fig 5. Randomness of sequences by league. Sequence randomness is the number of unique sequences less the number of

uniques sequences expected via random sampling. Smaller numbers thus reflect less sequence diversity (and more sequence

repetition), and larger numbers reflect more diversity. See the text for further details.

https://doi.org/10.1371/journal.pone.0218251.g005
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The clearest description of our data is that players become faster with skill even where (a)

sequences are already chunked at the novice levels and (b) even where there is little or no stra-

tegic value to the sequence. For example, we considered whether the most frequently used

chunks also become even faster with skill. The MCF would predict that these latencies would

change the least as they are likely the first skills to reach complete automatization. We exam-

ined speeds from the most commonly occurring sequence in our dataset which was Screen-

shift—Select: a shift of a players view-screen and the selection of a unit with the mouse. Our

chunk detector identified this sequence in 1,789 games. The first action latency for such

chunked screen-shifts varied markedly by league (F(7,1776) = 199.7, p<2e-16; ηp
2 = 0.44) and,

to a much lesser extent, by player species (F(5,1776) = 24.914, p<2e-16; ηp
2 = 0.065). The

latency of the second action (Select) in these chunks also varied by league (F(7,1776) = 200.13,

p<2e-16; ηp
2 = 0.44) and player species (F(5,1776) = 5.72, p = 3e-05; ηp

2 = 0.015). This shows

that while chunks do not appear to save players time, novices nevertheless still have a lot to

learn about even the most foundational behavioural sequences in the game.

Interestingly, we also observed learning even in behaviours which are almost irrelevant to

success in the game. While the MCF might allow some learning to occur unconsciously and

without deliberate attempts to improve, modern accounts of expertise emphasize such deliber-

ate practice in explaining changes in performance [25]. For example, repetitions of right-clicks

following screen shifts usually constitute redundant actions in the context of StarCraft 2, as

each right-click usually overrides the previous command. We conducted an analysis of this

right-click latency without use of our chunk-detector. Instead we identified sequences of right-

clicks which contained no other actions and were punctuated between screen shifts.

Fig 6. Number of total seconds saved by chunking by league. This is calculated as the average of the duration of chunked

sequences less the time for equivalent non-chunked actions for each game by skill level.

https://doi.org/10.1371/journal.pone.0218251.g006
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Nevertheless, the average inter-right-click latencies of right-clicks following screen shifts

changed across the first six leagues of experience (F(5,3196) = 79.71, p<2e-16; ηp
2 = 0.11; but

see S1 Text for subtle respects in which this analysis departs from other analyses presented

here). As one would expect from redundant actions that are common to all game species, there

was no main effect for player species (F(2,3196) = 2.62, p = 0.07, ηp
2 = 0.001).

The overall pattern of results, therefore, is characterized not by the chunking account illus-

trated in Fig 1, or even the effects of deliberate practice alone, but by the illustration shown in

Fig 8. The proportion of actions that are chunked does not change with increased learning,

however, the number of different chunks does increase as players gain experience. Overall,

experts show increasing diversity in their actions, rather than increasing constancy predicted

by the MCF, which we call the diversity problem. Finally, first action latencies are longer than

non-chunked actions, eliminating the benefit of decreased latencies for subsequent actions in

chunks. Learning-related speed increases, it seems, come not as a result of chunking, but

largely from a general speed increase to all atomic actions, called here the time savings

problem.

Discussion

The Motor Chunking Framework claims that chunks save time: actions are performed in a

learned sequence and so do not require individual planning, thus, actions after the initial

action are executed faster. As illustrated in Fig 1, the MCF explanation for expert performance

involves the conversion of an increasing proportion of individual actions into timesaving

chunks. We sought to test these predictions about the proportion, diversity, and speed of

Fig 7. First versus inter-action time savings. Time saved by chunks (in seconds) split for first actions and subsequent

actions for each skill level.

https://doi.org/10.1371/journal.pone.0218251.g007
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chunks using replay data from the real-time strategy game StarCraft 2, collected from players

across eight skill levels.

Overall, the findings of the present work stand against, rather than for, the MCF as an

explanation of skill development in StarCraft 2; performance, in turns out, is not merely a

story about the monopolizing influence of a relatively small number of highly adaptive beha-

vioural sequences or chunks. The MCF account has two problems: a time-saving problem, and

a diversity problem.

The time-saving problem stems from the simple fact that, in our data, chunks do not save

players time overall. This, alone, undermines chunking as an explanation for the clear and con-

sistent trend of faster performance as skill develops. But there is an additional and related diffi-

culty—the percentage of actions that are in chunks does not increase with expertise, so a

uniform effect of chunking cannot account for skill related changes. Even if every chunked

action did save some set amount of time, the MCF is thus still unable to account for skill-based

performance gains.

The MCF is also at odds with the overall trend of increasing diversity of actions as skill

increases. If useful chunks were replacing non-optimal non-chunked sequences, then we

would see an increase in the number and variety of chunks, but an overall decrease in beha-

vioural diversity—random or accidental actions would drop away, leaving only optimal,

automatized chunks. We find evidence to the contrary: the proportion of actions that are

chunked remains constant as skill develops, such that the few additional chunks that are gained

with expertise lead to increasing, rather than decreasing, action diversity.

Methodology-based alternative explanations for our findings

We acknowledge that complicated methodologies can impede the interpretation of findings.

Unfamiliarity with the domain, or the methods used might justifiably make one uneasy about

the striking findings in the present work. In this section we will address the most common

concerns.

Are our results due to factors specific to StarCraft 2? We find it difficult to resolve the Diver-

sity Problem and the Time Savings Problem by appealing solely to domain specific idiosyncra-

sies. It is not very plausible that some poorly understood game mechanic of StarCraft 2

prevents common sequences from monopolizing more than 20% of game actions. Actions of

Fig 8. Schematic illustration of how action sequences change with expertise in our data. As skill is acquired, speed is gained through a

general speedup of all actions.

https://doi.org/10.1371/journal.pone.0218251.g008
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type ‘Train’ alone typically occupy 10% or more of the overall game actions and these appear

ripe for the automatization. Training always requires either a ‘Select’ or a ‘Hotkey’ command

to select relevant production structures prior to training, and funds limit players from training

all their required units once. Instead, the production of a powerful army typically requires that

players diligently task switch from other objectives back to issues of army production. Autom-

atizing such sequences would presumably be faster, require less cognitive load, and have no

obvious drawbacks. The same considerations apply to other typical StarCraft tasks such as

expanding and positioning one’s army. StarCraft 2 is a domain where we should expect the

MCF to thrive.

These data show that even novices have chunks, is that an indication that the chunk detector
is faulty? Bronze league players, the weakest players in our sample, report an average of 264

hours of practice and are therefore much more skilled than the novices in typical expertise

research. We should expect that their play will already contain some automatized skills.

Indeed, even the least experienced person in the dataset, with only 12 hours of reported experi-

ence, has plenty of time to develop somemotor chunks.

These data show that some players have no chunks, is that an indication that the chunk detec-
tor is faulty? While we believe that players have sufficient experience to develop motor chunks,

we also are mindful that StarCraft 2 is a new domain, and quite different from laboratory tasks

in many ways. In laboratory studies of motor chunking the participants participants do not

have to figure out what sequences are effective, they are simply provided them. Participants are

typically producing only a few sequences and are repeating them often. Finally, in the lab par-

ticipants are in situations of low distraction. In StarCraft 2 players have none of these advan-

tages, and so we do not find it difficult to believe that chunk acquisition might be considerably

slower in StarCraft 2 than in the laboratory, and that a few players might be unusually slow to

automatize. We note that the overwhelming majority of participants (94%) do indeed develop

chunks. It is also important to note that, given that our chunk analyses is based on a sample of

over 800,000 chunks, a small number of missed chunks is very unlikely to influence our

findings.

Could a faulty chunk detector be the cause of our findings? Any chunk-detection algorithm

will occasionally miss chunks or produce false alarms. In the case of our chunk-detector,

skilled players might have chunked complex maneuvers which are only required once per

game, so our algorithm will never categorize these behaviours as chunked. It is especially

important, therefore, to consider how limitations in the chunk-detector could impact our

analysis.

First, the chunks that were identified by our detector show the standard pattern [2, 3] of

slow first actions (first actions average, 720ms while subsequent actions are 563ms). If there

are false alarms, there are not so many as to obscure the expected slowness of first actions. For

this reason it seems unlikely that we have a large number of misclassifications, generally.

An alternate possible concern is that our chunk detector is only missing real chunks rather

than misclassifying everything. This would mean that when we calculate time saved by chunks

we are comparing chunk latencies, to a mixture of non-chunk and missed chunk latencies. If

we missed only a few chunks, then the observed effect of time saved by chunks would be

smaller than it should be because the missed chunks would bringing the mean of the non-

chunk (in reality a mixture) group closer to the mean of the chunk group. If the mixture group

contains almost all missed chunks, exhibiting a high miss rate, then the time savings would be

near zero. There are thus two factors to keep in mind. The first factor is the true difference in

latencies between chunks and non-chunks (i.e., the per-action time savings), and the second is

how many chunks might be reasonably missed.
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Missed chunks are not a convincing explanation of our findings because there are no plau-

sible values for per-action time savings of chunked actions, or for the percentage of chunks,

that are consistent with the MCF’s account of action latencies. The problem is that per-action

time savings must be large for chunks to account for the significant speed-up of actions with

expertise—recall, latencies of the lowest skill participants are about 4 times slower than than of

the highest skill participants (a difference of about 700ms; see Fig 2). The second factor is the

proportion of the actions labeled non-chunks that are actually missed chunks. To make a large

(population) difference between chunked latencies and non-chunked latencies evaporate, this

proportion must also be very large (if this proportion is small then missed chunks might

reduce time savings, but it would not be sufficient to eliminate them). Due to the size of our

sample, we have about a 99% chance to detect 3.5 seconds of overall time savings per game, so

it would need to be the case that most actions are chunked and that most chunks are missed.

But, even that scenario is problematic, because if most actions are already chunked, then how

do we explain the novice to expert speed increase? The only way such an explanation is possi-

ble is if our chunk detector is very good at capturing novice chunks but systematically misclas-

sifies the vast majority of all of the expert actions as non-chunked. Unfortunately, while it is

plausible that the assumed relationship between sequence prevalence and chunkhood becomes

weaker in experts (who might practice rare sequences outside of real games), it seems unlikely

that this behaviour could lead to the extreme bias which would be required to make our results

fit with the MCF. After all, we observe latency shrinkage even for redundant actions like right-

clicks that professionals have no reason to practice.

Finally, it is important to reiterate that missed chunks cannot explain away the diversity

problem at all. We verified the original finding using a second, independent analysis which

makes no reference to our chunk detector by sampling 200 actions before and after the ten

minute mark of a game (Fig 5). Missed chunks, for the reasons described above, are not a via-

ble alternative account.

Does the analysis still hold for nested chunks? A final possibility worth considering whether

our results could be influenced by the fact that larger chunks are often nested within smaller

ones [4]. There is a sense in which our analysis overlooks these superchunks, as our chunk-

detector only identifies possible chunks up to four actions in length. However, our time-sav-

ings analysis does consider nested chunks in the sense that, after identifying lower-level

chunks, we flag every action within the game as being chunked or not. The first action of a

chunked sequence is defined as the first action in a sequence of chunked actions. Therefore,

while our chunk-detector only identifies two, three, and four action chunks, our analysis does

give appropriate consideration of nested chunks. Indeed, the time savings described in Fig 7 is

meant to represent nested chunks of any size.

How do these results fit with previous attempts to identify chunks in StarCraft 2?
Thompson, McColeman, Stepanova, & Blair [19] defined chunks as any action sequence

falling between screen-shifts. They also found the standard latency pattern of slow first actions

[2, 3]. The two chunk-detection algorithms may overlap, as the most common chunk was

‘Screen-shift—Select’, suggesting that attentional shifts may indeed be reasonable indicators of

a chunk-boundary.

Concluding remarks

The MCF predicts a net decrease in the diversity of expert sequences. Our unique sequence

analysis is a direct examination of this prediction finding that, contrary to MCF, the variety of

behavioural sequences executed by better players is closer to a random shuffling of their action

types. Diversity might be adaptive, much like expert drivers that display a more diverse fixation
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pattern than novices while operating a car [32]. Underwood and colleagues suggest that their

observation of more random fixation patters in better drivers is a consequence of reduced cog-

nitive load during the primary driving task. It may be the case that expert StarCraft 2 players

are exhibiting less cognitive load during their primary interfacing task and dedicated more

cognitive resources to higher level and exploratory processes. If this account is correct, then

the role of motor chunking is about freeing cognitive resources, not saving time directly

through automatization.

The Time Savings problem is another challenge to the MCF. The discrepancy between time

savings of first actions savings and within action savings suggests that our detector was indeed

picking out hierarchically controlled sequences. However, on standard theories of automatiza-

tion, speed and automatization are purchased by experience [5] and there is every reason to

think that StarCraft 2 players have more experience executing prevalent sequences than less

prevalent sequences (recall that our chunk detector highlights sequences that are highly fre-

quent relative to the base rates of their components). Nevertheless, we struggled to find any

evidence that chunks save time.

Actions of better StarCraft 2 players are much faster, and if these speed differences are not

purchased by increased automatization, then they must presumably be purchased by the selec-

tion of better chunks. In other words, it may be that skill development in StarCraft 2 is less of a

story about automatization and more of a story about maximal adaptation to task constraints

[33]. In this proposal, better players are those who have identified the most efficient ways of

accomplishing basic game functions. There is also some evidence that experts opt for more

efficient forms of commanding their army. For example, players can select units either with

natural ‘Select’ commands or more efficiently with ‘hotkey’ commands, and there is evidence

that better players make better use of interface shortcuts [34].

One difficulty with explaining expert speed by looking to the quality of expert behavioural

sequences is that this does not solve the diversity problem. Experts, as a class, do not appear to

settle upon a shared way of doing things. On the contrary, there appears to be respectable vari-

ability across all players in terms of the actual chunks they employ. Recall that, of the unique

critical sequences, a sequence was usually only critical in about four games. Amongst profes-

sional players, the median number of games in which each critical sequence was statistically

significant was two.

One might try to resolve both the Diversity Problem and the Time Savings problem by

arguing that (a) increased diversity in behavioural sequences are due to a reduction in cogni-

tive load, allowing for a host of exploratory behaviours and (b) the sequences of StarCraft 2

players are all too automatized for well practiced sequences to save time. For this proposal to

be tenable, automaticity is relegated to the position of a necessary criterion for competent per-

formance with no capacity to explain between-subject differences in speed (i.e., the speed dif-

ferences in Fig 2). While the explanatory role of automaticity in expert performance has been

questioned previously [33], it has never, to our knowledge, sunk quite so low in a major theory

of skill development.

It is important to note that the diversity problem and the time-savings problems, while per-

haps a serious threat to a simple theory of motor chunking, are actually opportunities for more

nuanced theories of chunking. For example, a motivation for the Cognitive framework for

Sequential Motor Behaviour (C-SMB; [21]) was to ‘[. . .] to increase the awareness of cognitive

scientists and cognitive neuroscientists of the processing complexities involved in preparing

and executing even relatively simple motor sequences.’ ([21], p. 56). Motor chunks, on this

account, are mental representations available to response selection processes, and there are a

variety of motor execution strategies that may make more or less use of motor chunks.
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This sort of theory might be able to accommodate our results in a number of ways. It might

address the diversity problem by positing that the cognitive systems of novice StarCraft 2 play-

ers, being adaptable, restrict behaviour to the relatively small repertoire of chunks that were

mastered within the first 100 hours of practice. This could resolve some aspects of the diversity

problem, as it would explain why action sequences become more diverse with skill. Other

aspects of the diversity problem, such as the consistent proportions of chunked actions, remain

somewhat puzzling as the mechanics of StarCraft 2 would seem to provide for many avenues

for chunking.

The time savings problem, while certainly counter-intuitive, is not necessarily a problem

for modern chunking theories. The C-SMB, for example, is reconcilable with the notion that

motor-chunks play no direct and major role in explaining skilled performance timings beyond

a few hours of practice. The C-SMB posits a variety of different chunk-types and execution

strategies. The important explanatory role of motor chunks might be exhausted after the first

few hours of practice.

Consequently, we are not arguing that chunks don’t exist. On the contrary, the chunks we

detected did show the anticipated delayed first actions. What our findings suggest is that sim-

ple motor chunking is an inadequate explanation of the timings and diversity of learned motor

sequences in complex tasks. Given that during extended practice, there are many documented

structural [35–39], functional [40] and connectivity changes in the human brain [41] that can

potentially explain performance changes without reference to chunking, perhaps it is time to

reevaluate the central role chunking has played in our understanding of skilled performance.

At the very least, our work echoes the call for more developed and nuanced accounts of

motor-chunking (e,g. [21]), as we find no evidence that uncovering the neurobiological imple-

mentation of chunking in the motor system will yield a full or significant account of expert

behaviour.

In short, it appears that the motor chunking framework’s straightforward explanation of

StarCraft 2 performance is flawed in a fundamental respect. This was a domain where we

would have thought that the MCF would successfully predict performance since speed is criti-

cal for success and there are a limited set of possible actions. However, instead of a simple

story where automatization leads a small set of highly efficient and automatic sequences to

take over the functions of basic StarCraft 2 mechanics, we find a greater diversity of sequences

with highly skilled individuals, and little evidence that players are faster when executing the

most common sequences. Without some solution to the Diversity problem and the Time Sav-

ings problem, it appears that MCF will have little application to the study of expertise beyond

the domains of traditional study such as typing.
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