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Introduction to Open
Textbooks

This open access textbook was developed as an introductory
resource to introduce basic concepts related to human
biomechanics. It was edited and developed for students from
Douglas College enrolled in Biomechanics (SPSC 1151). This
book is best viewed online using the pressbooks format
however, multiple formats (e.g., pdf, epub, mobi) are also made
available.

A free textbook is great, but it can be even better with your
help. please contact me if you find any errors or typos in the
book.

Introduction to Open
Textbooks | xi





PART I

CHAPTER 1:
PREREQUISITE SKILLS
FOR BIOMECHANICS

Chapter Objectives

After this chapter, you will be able to:

• List the pre-requisite skills for success in
Biomechanics

• Define the field of Biomechanics
• Solve basic equations and algebra problems
• Understand the use of different units to

quantify physical variables
• Convert values between commonly used units

in Biomechanics
• Round your answers to two decimal places
• Graph simple sets of data in two-dimensions

In Biomechanics, we use principles of physics to quantify and
understand human movement. In order to apply the concepts
of physics, or more specifically, mechanics, students must have

Chapter 1: Prerequisite Skills for
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a mastery of certain skills such as trigonometry, algebra and
graphing. In this chapter, we review some of these concepts.
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1. 1.0 Introduction to
Biomechanics

What is your first reaction when you hear the word
“mechanics”? Do you imagine working through difficult
equations or formulas that seem to have no real use in life
outside the classroom? Many people come to the subject of
biomechanics with a bit of fear. But as you begin your
exploration of this broad-ranging subject, you may soon come
to realize that principles of mechanics plays a much larger role
in your life than you first thought, no matter your life goals or
career choice.

For example, think about how you walked to work or school
this morning. You applied a force to the ground and the ground
exerted a force back on your body, propelling you forwards.
Aside from moving through the environment, professionals
such as engineers, physicians, physical therapists and
computer programmers apply biomechanics concepts in their
daily work. For example, a physical therapist must understand
how the muscles in the body experience forces as they move
and bend. They must understand anatomy and the the effects
of forces on the structures to understand the mechanism of
injury and recovery.

Before we go any further, let’s define ‘Biomechanics‘. You
can separate the word into two parts: ‘Bio’ which suggests
that Biomechanics involves living or biological systems, and
‘Mechanics’ which suggests the analysis of forces and their
effects. Biomechanics is the study of structure and function of
biological systems by the means of mechanics (Hatze, 1974).
The goal of biomechanics related to human movement is to
improve physical performance (through improved technique,

1.0 Introduction to
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equipment or training) and injury prevention and
rehabilitation.

Mechanics is a branch of physics concerned with the effects
of forces acting on bodies. It can be divided into several
branches including rigid-body mechanics, deformable body
mechanics and fluid mechanics. This course will focus mostly
on rigid-body mechanics since we make the assumption that
the body is made of rigid segments linked together at the
joints. In reality, these segments do deform under the action
of forces but these deformation are considered negligible. You
can further subdivide rigid-body mechanics into statics (the
mechanics of bodies at rest or moving at a constant velocity)
and dynamics (the mechanics of bodies under acceleration).
Dynamics will be discussed in terms of kinematics
and kinetics.

Kinematics is a branch of study focused on the description of
motion (how high, how far, how fast!) and kinetics is a branch
focused on the explanation of motion (the forces that cause of
tend to cause changes in motion). This book with cover both
the kinematics and the kinetics of angular and linear
movements.
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2. 1.1 Understanding
Equations and Basic
Math

Mathematics can sometimes feel like a different language.
With enough practice, you can become fluent in the language
of numbers. Let’s review the concept of ‘equation’. An equation
says that two ‘things’ are equal with the use of an equal sign ‘=’.
For example:

x + 2 = 6
That equation says: what is on the left (x+2) is equal to what

is on the right (6) of the equal sign. This can be a powerful tool
as we aim to understand human movement with data
(numbers) collected. The equations may get a bit more
complicated but the rules remain the same.

A formula is a ‘rule’ that use mathematical symbols. It usually
consists of an equal sign and two or more variables. For
example. the formula for force (as you will see later in the
course) is:

F = ma
This can be stated as: the force acting on an object is equal

to the mass of the object multiplied by the acceleration of
the object. It can be convenient with formulas to have basic
algebra skills. In algebra, the goal is to get the letter or symbol
(also called the unknown) on one side of the equation (usually
the left) and the numbers on the other side.

The golden rule of algebra is: anything you do on one side of
the equation, you must do on the other side. For example, if you
want to add 10 from one side of the equation, you must add 10
from the other.

1.1 Understanding Equations and
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In cases where the variable shows up twice in the equation, you
should try to get all of the variables on one side of the equation
and all of the numbers on the other:

x + 23 = 3x +45
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1. Initial Equation / Problem x + 23 = 3x + 45

2. Subtract x from each
side

x – x +
23 = 3x – x + 45

Result 23 = 2x + 45

3. Subtract 45 from each
side 23 – 45 = 2x + 45 – 45

Result -22 = 2x

4. Divide both sides by 2 -22 = 2x

Result x = -11

To become proficient in algebra, you should practice.

A note on the symbols used in this textbook

You’ll notice that we used letters to symbolize a variable. For
example, the value for ‘force’ will feature as ‘F’ in an equation.
Although some symbols are universal (‘m’ for mass and ‘a’ for
acceleration), some are not. Physics, engineering and
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biomechanics may use different symbols for the same thing
(both p and L can be used for momentum). Sometimes, the
same symbol can have different meanings in the same field.
For example, a capital W can be used for both ‘weight’ and
‘work’. You’ll have to take great care in understanding the
meaning of each variable based on the context they are
presented in.

A symbol can have up to four parts: the main variable, a
leading superscript, a following superscript and a following
subscript:

xp’1
The main variable (p in the example above) represents the

variable you are quantifying. The leading superscript (x) let’s
the reader know the frame of reference. X represents the
horizontal axis and y the vertical axis. We’ll discuss this in detail
later in the book. The following superscript is important if you
are keeping track of the variable over time. Time zero does not
have a superscript, time at point 1 has a single prime, time at
point 2 has a double prime and so on… The following subscript
is important if you are quantifying the variable for more than
one body. If you have two runners and you are reporting both
their momentum, person 1 would have a moment p1 and
person 2, p2.
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3. 1.2 Physical
Quantities and Units.

Mechanics is a quantitative science which means
we will describe human movement and its causes
using numbers. To provide information about a
movement, we have to be able to specify how it is
measured. For example, we define distance and
time by specifying methods for measuring them,
whereas we define average speed by stating that it
is calculated as distance traveled divided by time of
travel.

Measurements of physical quantities are
expressed in terms of units, which are standardized
values. For example, the length of a race, which is a
physical quantity, can be expressed in units of
meters (for sprinters) or kilometers (for distance
runners). Without standardized units, it would be
extremely difficult for scientists to express and
compare measured values in a meaningful way. (See
Figure 1 below.)

1.2 Physical Quantities and
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Figure 1. Distances given in unknown units are
maddeningly useless.

There are two major systems of units
used in the world: SI units (also known
as the metric system) and English
units (also known as the customary or
imperial system). English units were
historically used in nations once ruled
by the British Empire and are still
widely used in the United States.
Virtually every other country in the
world now uses SI units as the
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standard; the metric system is also the
standard system agreed upon by
scientists and mathematicians. The
acronym “SI” is derived from the
French Système International.

SI Units: Fundamental and
Derived Units

The metric or SI system is administered in France
by the Bureau International des Poids and Mesures
or BIPM. You can read more about them
at https://www.bipm.org/en/about-us/

Table 1 below shows the fundamental SI units that
are used throughout this textbook.

Length Mass Time

meter (m) kilogram (kg) second (s)

Table 1. Fundamental SI Units.

It is an intriguing fact that some physical
quantities are more fundamental than others and
that the most fundamental physical quantities can
be defined only in terms of the procedure used to
measure them. The units in which they are
measured are thus called fundamental units. In this
textbook, the fundamental physical quantities are
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taken to be length, mass and time. All other physical
quantities, such as force and velocity, can be
expressed as algebraic combinations of length,
mass and time; these units are called derived units.

Units of Time, Length, and
Mass: The Second, Meter, and
Kilogram

The Second

The SI unit for time, the second (abbreviated s),
has a long history. For many years it was defined as
1/86,400 of a mean solar day. More recently, a new
standard was adopted to gain greater accuracy and
to define the second in terms of a non-varying, or
constant, physical phenomenon (because the solar
day is getting longer due to very gradual slowing of
the Earth’s rotation).

The Meter

The SI unit for length is the meter (abbreviated m);
its definition has also changed over time to become
more accurate and precise. In 1983, the meter was
given its present definition (partly for greater
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accuracy) as the distance light travels in a vacuum
in 1/299,792,458 of a second. This change defines
the speed of light to be exactly 299,792,458 meters
per second. The length of the meter will change if
the speed of light is someday measured with
greater accuracy.

Figure 2. The meter is defined to be the distance light
travels in 1/299,792,458 of a second in a vacuum. Distance
traveled is speed multiplied by time.

The Kilogram

The SI unit for mass is the kilogram (abbreviated
kg); it is defined to be the mass of a platinum-
iridium cylinder kept with the old meter standard at
the International Bureau of Weights and Measures
near Paris.

In Biomechanics, all pertinent physical quantities
can be expressed in terms of these fundamental
units of length, mass, and time.

Metric Prefixes

1.2 Physical Quantities and Units. | 13



SI units are part of the metric system. The metric
system is convenient for scientific and engineering
calculations because the units are categorized by
factors of 10. The table below gives metric prefixes
and symbols used to denote various factors of 10.

Metric systems have the advantage that
conversions of units involve only powers of 10. There
are 100 centimeters in a meter, 1000 meters in a
kilometer, and so on.
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Prefix Symbol Value Example (some are approximate)

kilo k 103 kilometer k
m

103

m
about 6

mile

hecto h 102 hectoliter hL 102

L 2

deka da 101 dekagram da
g

101

g
te

of but

— —
100

(=1) meter

deci d 10-1 deciliter dL 10-1

L
less than

half a soda
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Prefix Symbol Value Example (some are approximate)

centi c 10-2 centimeter c
m

10-2

m
fin

thic

milli m 10-3 millimeter m
m

10-3

m
fle

shoulder

Table 2. Select Metric Prefixes for Powers of 10 and their Symbols.

Physical quantities are a characteristic or property
of an object that can be measured or calculated
from other measurements.

• Units are standards for expressing and
comparing the measurement of physical
quantities. All units can be expressed as
combinations of three fundamental units.

• The three fundamental units we will use in
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this text are the meter (for length), the
kilogram (for mass) and the second (for time).
These units are part of the metric system,
which uses powers of 10 to relate quantities
over the vast ranges encountered in nature.

• The three fundamental units are abbreviated
as follows: meter, m; kilogram, kg; second, s.
The metric system also uses a standard set of
prefixes to denote each order of magnitude
greater than or lesser than the fundamental
unit itself.

Glossary

physical quantity
a characteristic or property of an object that

can be measure or calculated from other
measurements

units
a standard used for expressing and

comparing measurements
SI units

the international system of units that scientist
in most countries have agreed to use; includes
units such as meters, liters, and grams

English units
system of measurement used in the United

States; includes units of measurement such as
feet, gallons, and pounds
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fundamental units
units that can only be expressed relative to

the procedure used to measure them
derived units

units that can be calculated using algebraic
combinations of the fundamental units

second
the SI unit for time, abbreviated (s)

meter
the SI unit for length, abbreviated (m)

kilogram
the SI unit for mass, abbreviated (kg)

metric system
a system in which values can be calculated in

factors of 10
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4. 1.3 Converting Units

It is sometimes important to convert between different types of
units. Let us consider a simple example of how to convert units.
Let us say that we want to convert 80 meters (m) to kilometers
(km).

The first thing to do is to list the units that you have and the
units that you want to convert to. In this case, we have units in
meters and we want to convert to kilometers.

Next, we need to determine a conversion factor relating
meters to kilometers. A conversion factor is a ratio expressing
how many of one unit are equal to another unit. For example,
there are 100 centimeters in 1 meter, 60 seconds in 1 minute,
and so on. In this case, we know that there are 1,000 meters in 1
kilometer.

Now we can set up our unit conversion. We will write the
units that we have and then multiply them by the conversion
factor so that the units cancel out, as shown:

Note that the unwanted m unit cancels, leaving only the
desired km unit. You can use this method to convert between
any types of unit.

Here’s another way to think about it:
Consider a simple example: how many cm are there in 4

meters? You may simply think there are 400cm in 4 meters.
How did you make this determination? Well, if there are 100 cm
in 1 m and there are 4 meters, then there are 4 × 100 = 400cm
in 4 meters.

This is correct, of course, but it is informal. Let us formalize it
in a way that can be applied more generally. We know that 1 m
equals 100 cm:
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1 m = 100 cm
In math, this expression is called an equality. The rules of

algebra say that you can change (i.e., multiply or divide or add
or subtract) the equality (as long as you don’t divide by zero)
and the new expression will still be an equality. For example, if
we divide both sides by 2, we get

1/2 m = 100/2 cm
We see that one-half of a meter equals 100/2, or fifty

cm—something we also know to be true, so the above
equation is still an equality. Going back to the original equality,
suppose we divide both sides of the equation by 1 meter
(number and unit):

1/1m = 100cm/1m

The expression is still an equality, by the rules of algebra. The
left fraction equals 1. It has the same quantity in the numerator
and the denominator, so it must equal 1. The quantities in the
numerator and denominator cancel, both the number and the
unit. When everything cancels in a fraction, the fraction
reduces to 1:

1 = 100cm/1m
We have an expression, 100 cm / 1m, that equals 1. This is a

strange way to write 1, but it makes sense: 100 cm equal 1 m, so
the quantities in the numerator and denominator are the same
quantity, just expressed with different units. The expression 100
cm / 1m is called a conversion factor, and it is used to formally
change the unit of a quantity into another unit. (The process of
converting units in such a formal fashion is sometimes called
dimensional analysis or the factor label method.)

To see how this happens, let us start with the original
quantity:

4 m
Now let us multiply this quantity by 1. When you multiply

anything by 1, you don’t change the value of the quantity.
Rather than multiplying by just 1, let us write 1 as 100cm/1m:
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4 m X 100cm/1m
The 4 m term can be thought of as 400cm/1; that is, it can

be thought of as a fraction with 1 in the denominator. We are
essentially multiplying fractions. If the same thing appears in
the numerator and denominator of a fraction, they cancel. In
this case, what cancels is the unit meter:

400cm
That is all that we can cancel. Now, multiply and divide all the

numbers to get the final answer:
Again, we get an answer of 400 cm, just as we did originally.

But in this case, we used a more formal procedure that is
applicable to a variety of problems.

Want more examples?

How many millimeters are in 14.66 m? To answer this, we need
to construct a conversion factor between millimeters and
meters and apply it correctly to the original quantity. We start
with the definition of a millimeter, which is

1 mm = 1/1,000 m
The 1/1,000 is what the prefix milli- means. Most people are

more comfortable working without fractions, so we will rewrite
this equation by bringing the 1,000 into the numerator of the
other side of the equation:

1,000 mm = 1 m
Now we construct a conversion factor by dividing one

quantity into both sides. But now a question arises: which
quantity do we divide by? It turns out that we have two choices,
and the two choices will give us different conversion factors,
both of which equal 1:
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Which conversion factor do we use? The answer is based on
what unit you want to get rid of in your initial quantity. The
original unit of our quantity is meters, which we want to
convert to millimeters. Because the original unit is assumed to
be in the numerator, to get rid of it, we want the meter unit in
the denominator; then they will cancel. Therefore, we will use
the second conversion factor. Canceling units and performing
the mathematics, we get

Note how m cancels, leaving mm, which is the unit of
interest.

The ability to construct and apply proper conversion factors is
a very powerful mathematical technique in biomechanics. You
need to master this technique if you are going to be successful
in this and future courses.
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Applied Example: Unit
Conversions: A Short Drive
Home

Suppose that you drive the 10.0 km
from your university to home in 20.0 min.
Calculate your average speed (a) in
kilometers per hour (km/h) and (b) in
meters per second (m/s). (Note: Average
speed is distance traveled divided by time
of travel.)

Strategy

First we calculate the average speed
using the given units. Then we can get
the average speed into the desired units
by picking the correct conversion factor
and multiplying by it. The correct
conversion factor is the one that cancels
the unwanted unit and leaves the desired
unit in its place.

Solution for (a)

(1) Calculate average speed. Average
speed is distance traveled divided by time
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of travel. (Take this definition as a given
for now—average speed and other
motion concepts will be covered in a later
module.) In equation form,

.

(2) Substitute the given values for
distance and time.

(3) Convert km/min to km/h: multiply by
the conversion factor that will cancel
minutes and leave hours. That conversion
factor is 60 min/hr. Thus,

.

Discussion for (a)

To check your answer, consider the
following:

(1) Be sure that you have properly
cancelled the units in the unit conversion.
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If you have written the unit conversion
factor upside down, the units will not
cancel properly in the equation. If you
accidentally get the ratio upside down,
then the units will not cancel; rather, they
will give you the wrong units as follows:

,

which are obviously not the desired
units of km/h.

(2) Check that the units of the final
answer are the desired units. The problem
asked us to solve for average speed in
units of km/h and we have indeed
obtained these units.

(3) Round to two decimal places. The
answer can be left as 30 km/h since it is a
whole value.

(4) Next, check whether the answer is
reasonable. Let us consider some
information from the problem—if you
travel 10 km in a third of an hour (20 min),
you would travel three times that far in an
hour. The answer does seem reasonable.

Solution for (b)
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There are several ways to convert the
average speed into meters per second.

(1) Start with the answer to (a) and
convert km/h to m/s. Two conversion
factors are needed—one to convert hours
to seconds, and another to convert
kilometers to meters.

(2) Multiplying by these yields

,

.

Discussion for (b)

If we had started with 0.500 km/min, we
would have needed different conversion
factors, but the answer would have been
the same: 8.33 m/s.

What if we have a derived unit that is the product of more
than one unit, such as m2? Suppose we want to convert square
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meters to square centimeters? The key is to remember that m2

means m × m, which means we have two meter units in our
derived unit. That means we have to include two conversion
factors, one for each unit. For example, to convert 17.6 m2 to
square centimeters, we perform the conversion as follows:

Practice Problem

How many cubic centimeters are in 0.883 m3?

Solution

With an exponent of 3, we have three length units,
so by extension we need to use three conversion
factors between meters and centimeters. Thus, we
have

You should demonstrate to yourself that the three
meter units do indeed cancel.

Suppose the unit you want to convert is in the denominator of
a derived unit; what then? Then, in the conversion factor, the
unit you want to remove must be in the numerator. This will
cancel with the original unit in the denominator and introduce
a new unit in the denominator. The following example
illustrates this situation.
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Practice Problem

Convert 88.4 m/min to meters/second.

Solution

We want to change the unit in the denominator
from minutes to seconds. Because there are 60
seconds in 1 minute (60 s = 1 min), we construct a
conversion factor so that the unit we want to
remove, minutes, is in the numerator: 1 min/60 s.
Apply and perform the math:

Notice how the 88.4 automatically goes in the
numerator. That’s because any number can be
thought of as being in the numerator of a fraction
divided by 1.

Sometimes there will be a need to convert from one unit with
one numerical prefix to another unit with a different numerical
prefix. How do we handle those conversions? Well, you could
memorize the conversion factors that interrelate all numerical
prefixes. Or you can go the easier route: first convert the
quantity to the base unit, the unit with no numerical prefix,
using the definition of the original prefix. Then convert the
quantity in the base unit to the desired unit using the
definition of the second prefix. You can do the conversion in
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two separate steps or as one long algebraic step. For example,
to convert 2.77 kg to milligrams:

Alternatively, it can be done in a single multistep process:

You get the same answer either way.
How do I round my final answer?

For the purpose of this class, you can round your answer to
two decimal places. For example, if your final answer of the
force exerted during an Olympic deadlift is 783.4723 N, you can
round to 783.47 N.

The third number after the decimal will decide how to
proceed:

1. If the number you are rounding is followed by 5, 6, 7, 8, or
9, round the number up. Example: 38.345 will round to
38.35.

2. If the number you are rounding is followed by 0, 1, 2, 3, or 4,
round the number down. Example: 38.342 will round to
38.34.

3. If the final answer is a whole number: 38.00000 you can
write your answer as 38.
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Key Takeaways

• Units can be converted to other units using the
proper conversion factors.

• Conversion factors are constructed from
equalities that relate two different units.

• Conversions can be a single step or multistep.
• Unit conversion is a powerful mathematical

technique in biomechanics that must be
mastered.

• In this course, you can round your answer to
two decimal places.
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5. 1.4 Accuracy and
Precision of
Measurements

Science is based on observation and experiment—that is, on
measurements. Accuracy is how close a measurement is to the
correct value for that measurement. For example, let us say
that you are measuring the length of a long jump. The jump
was 7.2 m long. You measure the length of the jump three
times and obtain the following measurements: 7.1 m., 7.3 m.,
and 7.2 m. These measurements are quite accurate because
they are very close to the correct value of 7.2 m. In contrast, if
you had obtained a measurement of 8 m, your measurement
would not be very accurate.

The precision of a measurement system is refers to how close
the agreement is between repeated measurements (which are
repeated under the same conditions). Consider the example
of the long jump measurements. The precision of the
measurements refers to the spread of the measured values.
One way to analyze the precision of the measurements would
be to determine the range, or difference, between the lowest
and the highest measured values. In that case, the lowest value
was 7.1 m. and the highest value was 7.3 m. Thus, the measured
values deviated from each other by at most 0.2 m. These
measurements were relatively precise because they did not
vary too much in value. However, if the measured values had
been 7.1, 7.3, and 7.9, then the measurements would not be very
precise because there would be significant variation from one
measurement to another.

The measurements in the long jump example are both
accurate and precise, but in some cases, measurements are
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accurate but not precise, or they are precise but not accurate.
Let us consider an example of a GPS system that is attempting
to locate the position of a runner in a city. Think of the runners
location as existing at the centre of a bull’s-eye target, and
think of each GPS attempt to locate the restaurant as a black
dot. In Figure 1 you can see that the GPS measurements are
spread out far apart from each other, but they are all relatively
close to the actual location of the runner at the centre of the
target. This indicates a low precision, high accuracy measuring
system. However, in Figure 2 the GPS measurements are
concentrated quite closely to one another, but they are far
away from the target location. This indicates a high precision,
low accuracy measuring system.
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Figure 1. A GPS system attempts to locate a runner at the center of
the bull’s-eye. The black dots represent each attempt to pinpoint the
location of the runner. The dots are spread out quite far apart from
one another, indicating low precision, but they are each rather close
to the actual location of the runnert, indicating high accuracy.
(credit: Dark Evil).
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Figure 2. In this figure, the dots are concentrated rather closely to
one another, indicating high precision, but they are rather far away
from the actual location of the runner, indicating low accuracy.
(credit: Dark Evil).

Accuracy, Precision, and Uncertainty

The degree of accuracy and precision of a measuring system
are related to the uncertainty in the measurements.
Uncertainty is a quantitative measure of how much your
measured values deviate from a standard or expected value. If
your measurements are not very accurate or precise, then the
uncertainty of your values will be very high. In more general
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terms, uncertainty can be thought of as a disclaimer for your
measured values. For example, if someone asked you to
provide the estimated time you will take to complete a 50
km trail race, you might say that it will take you 8 hours, plus
or minus 30 minutes. The plus or minus amount is the
uncertainty in your value. That is, you are indicating that the
actual time it may take you to complete the race might be
as low as 7 and a half hours or as high as 8 and a half hours,
or anywhere in between. All measurements contain some
amount of uncertainty. In our example of measuring the length
of the long jump, we might say that the length of the jump is
7.2 m., plus or minus 0.1 m. The uncertainty in a measurement,
A, is often denoted as δA (“delta A”), so the measurement result
would be recorded as A ± δA. In our paper example, the length
of the jump could be expressed as 7.2 m. ± 0.1.

The factors contributing to uncertainty in a measurement
include:

1. Limitations of the measuring device,
2. The skill of the person making the measurement,
3. Irregularities in the object/body being measured,
4. Any other factors that affect the outcome (highly

dependent on the situation).

In our example, such factors contributing to the uncertainty
could be the following: the smallest division on the ruler is 0.1
m. or the person using the ruler has bad eyesight.. At any rate,
the uncertainty in a measurement must be based on a careful
consideration of all the factors that might contribute and their
possible effects.

Percent Uncertainty

One method of expressing uncertainty is as a percent of the
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measured value. If a measurement A is expressed with
uncertainty, δA, the percent uncertainty (%unc) is defined to
be:

Example 1: Calculating Percent
Uncertainty: Angle of Take-off

You were told that to achieve maximum distance
in your long jump, you should take-off at an angle of
45 degrees. You jump four times attempting to
take-off at the optimal angle and measure the angle
of take-off each time manually with a protractor.
You obtain the following measurements:

• Jump 1 angle: 50 degrees
• Jump 2 angle: 65 degrees
• Jump 3 angle: 40 degrees
• Jump 4 angle: 25 degrees

You determine that the the average angle of take-
off you manage to complete is 45 degrees ±20.
What is the percent uncertainty of your take-off
angle when using a protractor?

Strategy

First, observe that the expected value of the take-
off angle, A, is 45 degrees. The uncertainty in this
value, δA, is 20 degrees. We can use the following
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equation to determine the percent uncertainty of
the weight:

Solution

Plug the known values into the equation:

Discussion

We can conclude that the take-off angle is 45
degree ±44.4%. Hint for future calculations: when
calculating percent uncertainty, always remember
that you must multiply the fraction by 100%. If you
do not do this, you will have a decimal quantity, not
a percent value.

Check Your Understanding 1

1: A high school track coach has just purchased a new
stopwatch. The stopwatch manual states that the
stopwatch has an uncertainty of ±0.05 s. Runners on
the track coach’s team regularly clock 100-m sprints of
11.49 s to 15.01 s. At the school’s last track meet, the first-
place sprinter came in at 12.04 s and the second-place
sprinter came in at 12.07 s. Will the coach’s new
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stopwatch be helpful in timing the sprint team? Why or
why not?

Summary

• Accuracy of a measured value refers to how close a
measurement is to the correct value. The uncertainty in a
measurement is an estimate of the amount by which the
measurement result may differ from this value.

• Precision of measured values refers to how close the
agreement is between repeated measurements.

Glossary
accuracy

the degree to which a measure value agrees with the
correct value for that measurement

percent uncertainty
the ratio of the uncertainty of a measurement to the
measure value, express as a percentage

precision
the degree to which repeated measurements agree with
each other

Solutions

Check Your Understanding 1

38 | 1.4 Accuracy and Precision of Measurements



1: No, the uncertainty in the stopwatch is too great to
effectively differentiate between the sprint times.

1.4 Accuracy and Precision of Measurements | 39



6. 1.5 Graphing
Introduction

Biomechanics researchers collect a lot of data (numbers) to
understand human movement. These numbers have to be
interpreted and presented to the readers. For example, if
researchers want to see if carbon insoles help you jump higher
than regular insoles they would have to collect jump height
from participants wearing both carbon and regular insoles.
They would calculate average jump height in carbon and
regular insole and be left with data to present to their audience.
They may chose to build a graph.

Graphs are a simple and elegant way to express a lot of
information. They allow you to visually display the relationship
between two (or more) variables. A basic graph typically has
two dimensions represented by a vertical line and a horizontal
line that intersect at a point called the origin. The horizontal
line (x-axis) represents the data from the independent variable
(time, frame number, insole type, etc..) where as the vertical
line (y-axis) represents the data from the dependent variable
(displacement, velocity, acceleration, force, jump height…). The
dependent variable is the variable that you are measuring and
quantifying.

More often than not, you will put lower numbers at the left
on the horizontal axis and at the bottom on the vertical axis.
The result is that the graphed line, or the bars in a bar graph,
go up—the most natural direction for most data. In reading
graphs, however, you should consider the axes and the type
of measure being plotted before you interpret the meaning of
lines going up and down, just to make sure that “up” represents
“more” or “better.”

If your study involves multiple variables, you can represent
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it in your graph by plotting each level of the variable with a
separate line. It is helpful to use different types of lines or
different colors. For example, you might graph the reaction
time of boys with a solid line and the reaction time of girls with
a dashed line. Alternatively, you can use different symbols—say,
an X or an O, or a triangle—for the different levels of the
variable. You can graph data by hand but in this class, you’ll be
asked to use a graphing software called Excel.

Want help Graphing a line-graph in Excel?
Instructions will vary slightly depending on the graph. Begin

by entering the data you collected onto an Excel Spreadsheet.
You should have at least two columns of data. The first column
contains the Independent variable (ex: time, trial number,
frame number). The second column, just to the right of the
first, should contain the Dependent variable (ex: distance,
velocity…). Place the name of the variable at the top of the
column and enter the data below. Now you are ready to graph:

• Highlight the area you wish to graph by using the mouse
and mouse keys. You should highlight both the
‘Independent Variable’ and one ‘Dependent Variable’
(graph one dependent variable at a time. Click on ‘Insert’
and ‘Chart’.

• On the menu at the top of the page, pick the type of
graph you would like (Straight Marked Scatter for line
graph).

• In the Chart Layout menu (at the top), type in chart title, x-
axis title, y-axis title; make sure to include the units.
Remove ALL gridlines.

The graph should have:

1. Labeled x and y axis with variable and unit.
2. A title
3. No gridlines
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4. No wasted space (adjust the axes value accordingly)
5. Clear data lines

Resources
The PHET group in Colorado have a large, and growing,

number of simulations to help you with your math basics.
You can check them all out at
https://phet.colorado.edu/en/simulations/category/math/

mathconcepts

Play around with this PHET simulation. It will help you see
what equations look like.

https://phet.colorado.edu/en/simulation/graphing-lines

For help with analyzing linear graphs, check out
https://phet.colorado.edu/en/simulation/graphing-slope-

intercept
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PART II

CHAPTER 2: ANATOMY
BASICS

Chapter Objectives

After this chapter, you will be able to:

• Use planes and axis to describe motion in three
dimensions

• Define and identify the different body
movements

• Describe the functions of the skeletal system
and define its two major subdivisions

• Discuss both functional and structural
classifications for body joints

• Describe the characteristic features for fibrous,
cartilaginous, and synovial joints and give
examples of each

• Discuss the structure of specific body joints and
the movements allowed by each

• Explain the criteria used to name skeletal
muscles

This section provides you with an overview of the ‘bio’ in
biomechanics. In order to properly communicate,
biomechanists need a good understanding of human anatomy
and related anatomical terms. You will quickly come to
understand that structure dictates functions.
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7. 2.0 The Bio in
Biomechanics

A discussion of Biomechanics would not be possible without a
brief presentation of anatomical terms. This section introduces
the basics of muscles, joints and bones as these terms will
be used for the rest of the course when discussing human
movement.

Since the human body can move in different position, we
will often discuss human movement relative to the anatomical
position. The anatomical position refers to an upright body,
facing the observer, feet flat and directed forward. The upper
limbs are at the body’s sides with the palms facing forward.
Certain terms used to describe the body and segments
include:

1. Superior: towards the head
Inferior: away from the head

2. Anterior: towards the front of the body
Posterior: towards the back of the body

3. Medial : towards the midline of the body
Lateral : away from the midline of the body

4. Proximal: closest to the trunk
Distal: away from the trunk

5. Superficial: towards the surface of the body
Deep: away from the surface
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8. 2.1. The Skeleton

Figure 1. Lateral View of the Human Skull.

The skeletal system forms the rigid internal framework of the
body. It consists of the bones, cartilages, and ligaments. Bones
support the weight of the body, allow for body movements,
and protect internal organs. Cartilage provides flexible strength
and support for body structures such as the thoracic cage, the
external ear, and the trachea and larynx. At joints of the body,
cartilage can also unite adjacent bones or provide cushioning
between them. Ligaments are the strong connective tissue
bands that hold the bones at a moveable joint together and
serve to prevent excessive movements of the joint that would
result in injury. Providing movement of the skeleton are the
muscles of the body, which are firmly attached to the skeleton
via connective tissue structures called tendons. As muscles
contract, they pull on the bones to produce movements of the
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body. Thus, without a skeleton, you would not be able to stand,
run, or even feed yourself!

Each bone of the body serves a particular function, and
therefore bones vary in size, shape, and strength based on
these functions. For example, the bones of the lower back and
lower limb are thick and strong to support your body weight.
Similarly, the size of a bony landmark that serves as a muscle
attachment site on an individual bone is related to the strength
of this muscle. Muscles can apply very strong pulling forces to
the bones of the skeleton. To resist these forces, bones have
enlarged bony landmarks at sites where powerful muscles
attach. This means that not only the size of a bone, but also
its shape, is related to its function. For this reason, the
identification of bony landmarks is important during your
study of the skeletal system.

Bones are also dynamic organs that can modify their
strength and thickness in response to changes in muscle
strength or body weight. Thus, muscle attachment sites on
bones will thicken if you begin a workout program that
increases muscle strength. Similarly, the walls of weight-
bearing bones will thicken if you gain body weight or begin
pounding the pavement as part of a new running regimen.
In contrast, a reduction in muscle strength or body weight
will cause bones to become thinner. This may happen during
a prolonged hospital stay, following limb immobilization in a
cast, or going into the weightlessness of outer space. Even a
change in diet, such as eating only soft food due to the loss
of teeth, will result in a noticeable decrease in the size and
thickness of the jaw bones.

The skeletal system includes all of the bones, cartilages, and
ligaments of the body that support and give shape to the body
and body structures. The skeleton consists of the bones of the
body. For adults, there are 206 bones in the skeleton. Younger
individuals have higher numbers of bones because some
bones fuse together during childhood and adolescence to form

2.1. The Skeleton | 47



an adult bone. The primary functions of the skeleton are to
provide a rigid, internal structure that can support the weight
of the body against the force of gravity, and to provide a
structure upon which muscles can act to produce movements
of the body. The lower portion of the skeleton is specialized
for stability during walking or running. In contrast, the upper
skeleton has greater mobility and ranges of motion, features
that allow you to lift and carry objects or turn your head and
trunk.

In addition to providing for support and movements of the
body, the skeleton has protective and storage functions. It
protects the internal organs, including the brain, spinal cord,
heart, lungs, and pelvic organs. The bones of the skeleton serve
as the primary storage site for important minerals such as
calcium and phosphate. The bone marrow found within bones
stores fat and houses the blood-cell producing tissue of the
body.

The skeleton is subdivided into two major divisions—the axial
and appendicular.

The Axial Skeleton

The axial skeleton forms the vertical, central axis of the body
and includes all bones of the head, neck, chest, and back
(Figure 1). It serves to protect the brain, spinal cord, heart, and
lungs. It also serves as the attachment site for muscles that
move the head, neck, and back, and for muscles that act across
the shoulder and hip joints to move their corresponding limbs.

The axial skeleton of the adult consists of 80 bones, including
the skull, the vertebral column, and the thoracic cage. The
skull is formed by 22 bones. Also associated with the head are
an additional seven bones, including the hyoid bone and the
ear ossicles (three small bones found in each middle ear). The
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vertebral column consists of 24 bones, each called a vertebra,
plus the sacrum and coccyx. The thoracic cage includes the
12 pairs of ribs, and the sternum, the flattened bone of the
anterior chest.

Figure 1. Axial and Appendicular Skeleton. The axial skeleton supports
the head, neck, back, and chest and thus forms the vertical axis of the
body. It consists of the skull, vertebral column (including the sacrum
and coccyx), and the thoracic cage, formed by the ribs and sternum.
The appendicular skeleton is made up of all bones of the upper and
lower limbs.
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The Appendicular Skeleton

The appendicular skeleton includes all bones of the upper and
lower limbs, plus the bones that attach each limb to the axial
skeleton. There are 126 bones in the appendicular skeleton of
an adult.

Review

The skeletal system includes all of the bones, cartilages, and
ligaments of the body. It serves to support the body, protect the
brain and other internal organs, and provides a rigid structure
upon which muscles can pull to generate body movements.
It also stores fat and the tissue responsible for the production
of blood cells. The skeleton is subdivided into two parts. The
axial skeleton forms a vertical axis that includes the head, neck,
back, and chest. It has 80 bones and consists of the skull,
vertebral column, and thoracic cage. The adult vertebral
column consists of 24 vertebrae plus the sacrum and coccyx.
The thoracic cage is formed by 12 pairs of ribs and the sternum.
The appendicular skeleton consists of 126 bones in the adult
and includes all of the bones of the upper and lower limbs plus
the bones that anchor each limb to the axial skeleton.

Glossary

appendicular skeleton
all bones of the upper and lower limbs, plus the girdle
bones that attach each limb to the axial skeleton

axial skeleton
central, vertical axis of the body, including the skull,
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vertebral column, and thoracic cage
coccyx

small bone located at inferior end of the adult vertebral
column that is formed by the fusion of four coccygeal
vertebrae; also referred to as the “tailbone”

ear ossicles
three small bones located in the middle ear cavity that
serve to transmit sound vibrations to the inner ear

hyoid bone
small, U-shaped bone located in upper neck that does not
contact any other bone

ribs
thin, curved bones of the chest wall

sacrum
single bone located near the inferior end of the adult
vertebral column that is formed by the fusion of five sacral
vertebrae; forms the posterior portion of the pelvis

skeleton
bones of the body

skull
bony structure that forms the head, face, and jaws, and
protects the brain; consists of 22 bones

sternum
flattened bone located at the center of the anterior chest

thoracic cage
consists of 12 pairs of ribs and sternum

vertebra
individual bone in the neck and back regions of the
vertebral column

vertebral column
entire sequence of bones that extend from the skull to the
tailbone
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9. 2.2 Joints

Figure 1. Girl Kayaking. Without joints, body movements would be
impossible. (credit: Graham Richardson/flickr.com)

The adult human body has 206 bones, and with the exception
of the hyoid bone in the neck, each bone is connected to at
least one other bone. Joints are the location where bones come
together. Many joints allow for movement between the bones.
At these joints, the articulating surfaces of the adjacent bones
can move smoothly against each other. However, the bones of
other joints may be joined to each other by connective tissue
or cartilage. These joints are designed for stability and provide
for little or no movement. Importantly, joint stability and
movement are related to each other. This means that stable
joints allow for little or no mobility between the adjacent bones.
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Conversely, joints that provide the most movement between
bones are the least stable. Understanding the relationship
between joint structure and function will help to explain why
particular types of joints are found in certain areas of the body.

The articulating surfaces of bones at stable types of joints,
with little or no mobility, are strongly united to each other.
For example, most of the joints of the skull are held together
by fibrous connective tissue and do not allow for movement
between the adjacent bones. This lack of mobility is important,
because the skull bones serve to protect the brain. Similarly,
other joints united by fibrous connective tissue allow for very
little movement, which provides stability and weight-bearing
support for the body. For example, the tibia and fibula of the
leg are tightly united to give stability to the body when
standing. At other joints, the bones are held together by
cartilage, which permits limited movements between the
bones. Thus, the joints of the vertebral column only allow for
small movements between adjacent vertebrae, but when
added together, these movements provide the flexibility that
allows your body to twist, or bend to the front, back, or side.
In contrast, at joints that allow for wide ranges of motion, the
articulating surfaces of the bones are not directly united to
each other. Instead, these surfaces are enclosed within a space
filled with lubricating fluid, which allows the bones to move
smoothly against each other. These joints provide greater
mobility, but since the bones are free to move in relation to
each other, the joint is less stable. Most of the joints between
the bones of the appendicular skeleton are this freely
moveable type of joint. These joints allow the muscles of the
body to pull on a bone and thereby produce movement of that
body region. Your ability to kick a soccer ball, pick up a fork, and
dance the tango depend on mobility at these types of joints.
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10. 2.2.1 Classification of
Joints

A joint, also called an articulation, is any place where adjacent
bones or bone and cartilage come together (articulate with
each other) to form a connection. Joints are classified both
structurally and functionally. Structural classifications of joints
take into account whether the adjacent bones are strongly
anchored to each other by fibrous connective tissue or
cartilage, or whether the adjacent bones articulate with each
other within a fluid-filled space called a joint cavity. Functional
classifications describe the degree of movement available
between the bones, ranging from immobile, to slightly mobile,
to freely moveable joints. The amount of movement available
at a particular joint of the body is related to the functional
requirements for that joint. Thus immobile or slightly moveable
joints serve to protect internal organs, give stability to the body,
and allow for limited body movement. In contrast, freely
moveable joints allow for much more extensive movements of
the body and limbs.

Structural Classification of Joints

The structural classification of joints is based on whether the
articulating surfaces of the adjacent bones are directly
connected by fibrous connective tissue or cartilage, or whether
the articulating surfaces contact each other within a fluid-filled
joint cavity. These differences serve to divide the joints of the
body into three structural classifications. A fibrous joint is
where the adjacent bones are united by fibrous connective
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tissue. At a cartilaginous joint, the bones are joined by hyaline
cartilage or fibrocartilage. At a synovial joint, the articulating
surfaces of the bones are not directly connected, but instead
come into contact with each other within a joint cavity that
is filled with a lubricating fluid. Synovial joints allow for free
movement between the bones and are the most common
joints of the body.

Functional Classification of Joints

The functional classification of joints is determined by the
amount of mobility found between the adjacent bones. Joints
are thus functionally classified as a synarthrosis or immobile
joint, an amphiarthrosis or slightly moveable joint, or as a
diarthrosis, which is a freely moveable joint (arthroun = “to
fasten by a joint”). Depending on their location, fibrous joints
may be functionally classified as a synarthrosis (immobile joint)
or an amphiarthrosis (slightly mobile joint). Cartilaginous joints
are also functionally classified as either a synarthrosis or an
amphiarthrosis joint. All synovial joints are functionally
classified as a diarthrosis joint.

Synarthrosis

An immobile or nearly immobile joint is called a synarthrosis.
The immobile nature of these joints provide for a strong union
between the articulating bones. This is important at locations
where the bones provide protection for internal organs.
Examples include sutures, the fibrous joints between the
bones of the skull that surround and protect the brain (Figure
1).
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Figure 1. Suture Joints of Skull. The suture joints of the skull are
an example of a synarthrosis, an immobile or essentially
immobile joint.

Amphiarthrosis

An amphiarthrosis is a joint that has limited mobility. An
example of this type of joint is the cartilaginous joint that unites
the bodies of adjacent vertebrae. Filling the gap between the
vertebrae is a thick pad of fibrocartilage called an intervertebral
disc (Figure 2). Each intervertebral disc strongly unites the
vertebrae but still allows for a limited amount of movement
between them. However, the small movements available
between adjacent vertebrae can sum together along the
length of the vertebral column to provide for large ranges of
body movements.

Another example of an amphiarthrosis is the pubic
symphysis of the pelvis. This is a cartilaginous joint in which
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the pubic regions of the right and left hip bones are strongly
anchored to each other by fibrocartilage. This joint normally
has very little mobility. The strength of the pubic symphysis is
important in conferring weight-bearing stability to the pelvis.

Figure 2. Intervertebral Disc. An intervertebral disc unites the
bodies of adjacent vertebrae within the vertebral column.
Each disc allows for limited movement between the
vertebrae and thus functionally forms an amphiarthrosis
type of joint. Intervertebral discs are made of fibrocartilage
and thereby structurally form a symphysis type of
cartilaginous joint.

Diarthrosis

A freely mobile joint is classified as a diarthrosis. These types of
joints include all synovial joints of the body, which provide the
majority of body movements. Most diarthrotic joints are found
in the appendicular skeleton and thus give the limbs a wide
range of motion. These joints are divided into three categories,
based on the number of axes of motion provided by each. An
axis in anatomy is described as the movements in reference
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to the three anatomical planes: transverse, frontal, and sagittal.
Thus, diarthroses are classified as uniaxial (for movement in
one plane- one degree of freedom), biaxial (for movement in
two planes- two degrees of freedom), or multiaxial joints (for
movement in all three anatomical planes – three degrees of
freedom).

A uniaxial joint only allows for a motion in a single plane
(around a single axis). The elbow joint, which only allows for
bending or straightening, is an example of a uniaxial joint. A
biaxial joint allows for motions within two planes. An example
of a biaxial joint is a metacarpophalangeal joint (knuckle joint)
of the hand. The joint allows for movement along one axis
to produce bending or straightening of the finger, and
movement along a second axis, which allows for spreading of
the fingers away from each other and bringing them together.
A joint that allows for the several directions of movement is
called a multiaxial joint (polyaxial or triaxial joint). This type of
diarthrotic joint allows for movement along three axes (Figure
3). The shoulder and hip joints are multiaxial joints. They allow
the upper or lower limb to move in an anterior-posterior
direction and a medial-lateral direction. In addition, the limb
can also be rotated around its long axis. This third movement
results in rotation of the limb so that its anterior surface is
moved either toward or away from the midline of the body.
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Figure 3. Multiaxial Joint. A multiaxial joint, such as the hip joint,
allows for three types of movement: anterior-posterior, medial-lateral,
and rotational.

Chapter Review

Structural classifications of the body joints are based on how
the bones are held together and articulate with each other. At
fibrous joints, the adjacent bones are directly united to each
other by fibrous connective tissue. Similarly, at a cartilaginous
joint, the adjacent bones are united by cartilage. In contrast, at
a synovial joint, the articulating bone surfaces are not directly
united to each other, but come together within a fluid-filled
joint cavity.

The functional classification of body joints is based on the
degree of movement found at each joint. A synarthrosis is a
joint that is essentially immobile. This type of joint provides
for a strong connection between the adjacent bones, which
serves to protect internal structures such as the brain or heart.
Examples include the fibrous joints of the skull sutures and
the cartilaginous manubriosternal joint. A joint that allows for
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limited movement is an amphiarthrosis. An example is the
pubic symphysis of the pelvis, the cartilaginous joint that
strongly unites the right and left hip bones of the pelvis. The
cartilaginous joints in which vertebrae are united by
intervertebral discs provide for small movements between the
adjacent vertebrae and are also an amphiarthrosis type of joint.
Thus, based on their movement ability, both fibrous and
cartilaginous joints are functionally classified as a synarthrosis
or amphiarthrosis.

The most common type of joint is the diarthrosis, which is
a freely moveable joint. All synovial joints are functionally
classified as diarthroses. A uniaxial diarthrosis, such as the
elbow, is a joint that only allows for movement within a single
anatomical plane. Joints that allow for movements in two
planes are biaxial joints, such as the metacarpophalangeal
joints of the fingers. A multiaxial joint, such as the shoulder or
hip joint, allows for three planes of motions.

Glossary

amphiarthrosis
slightly mobile joint

articulation
joint of the body

biaxial joint
type of diarthrosis; a joint that allows for movements
within two planes (two axes)

cartilaginous joint
joint at which the bones are united by hyaline cartilage
(synchondrosis) or fibrocartilage (symphysis)

diarthrosis
freely mobile joint

fibrous joint
joint where the articulating areas of the adjacent bones
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are connected by fibrous connective tissue
joint

site at which two or more bones or bone and cartilage
come together (articulate)

joint cavity
space enclosed by the articular capsule of a synovial joint
that is filled with synovial fluid and contains the
articulating surfaces of the adjacent bones

multiaxial joint
type of diarthrosis; a joint that allows for movements
within three planes (three axes)

synarthrosis
immobile or nearly immobile joint

synovial joint
joint at which the articulating surfaces of the bones are
located within a joint cavity formed by an articular capsule

uniaxial joint
type of diarthrosis; joint that allows for motion within only
one plane (one axis)

Solutions

Answers for Review Questions

1. C
2. B
3. A
4. D

Answers for Critical Thinking Questions

1. Functional classification of joints is based on
the degree of mobility exhibited by the joint. A

2.2.1 Classification of Joints | 61



synarthrosis is an immobile or nearly immobile
joint. An example is the manubriosternal joint or
the joints between the skull bones surrounding
the brain. An amphiarthrosis is a slightly
moveable joint, such as the pubic symphysis or an
intervertebral cartilaginous joint. A diarthrosis is a
freely moveable joint. These are subdivided into
three categories. A uniaxial diarthrosis allows
movement within a single anatomical plane or
axis of motion. The elbow joint is an example. A
biaxial diarthrosis, such as the
metacarpophalangeal joint, allows for movement
along two planes or axes. The hip and shoulder
joints are examples of a multiaxial diarthrosis.
These allow movements along three planes or
axes.

2. The functional needs of joints vary and thus
joints differ in their degree of mobility. A
synarthrosis, which is an immobile joint, serves to
strongly connect bones thus protecting internal
organs such as the heart or brain. A slightly
moveable amphiarthrosis provides for small
movements, which in the vertebral column can
add together to yield a much larger overall
movement. The freedom of movement provided
by a diarthrosis can allow for large movements,
such as is seen with most joints of the limbs.
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11. 2.2.2 Synovial Joints

Synovial joints are the most common type of joint in the body
(Figure 1). A key structural characteristic for a synovial joint that
is not seen at fibrous or cartilaginous joints is the presence
of a joint cavity. This fluid-filled space is the site at which the
articulating surfaces of the bones contact each other. Also
unlike fibrous or cartilaginous joints, the articulating bone
surfaces at a synovial joint are not directly connected to each
other with fibrous connective tissue or cartilage. This gives the
bones of a synovial joint the ability to move smoothly against
each other, allowing for increased joint mobility.
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Figure 1. Synovial Joints. Synovial joints allow for smooth movements
between the adjacent bones. The joint is surrounded by an articular
capsule that defines a joint cavity filled with synovial fluid. The
articulating surfaces of the bones are covered by a thin layer of
articular cartilage. Ligaments support the joint by holding the bones
together and resisting excess or abnormal joint motions.

Structural Features of Synovial Joints

Synovial joints are characterized by the presence of a joint
cavity. The walls of this space are formed by the articular
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capsule, a fibrous connective tissue structure that is attached
to each bone just outside the area of the bone’s articulating
surface. The bones of the joint articulate with each other within
the joint cavity.

Friction between the bones at a synovial joint is prevented by
the presence of the articular cartilage, a thin layer of hyaline
cartilage that covers the entire articulating surface of each
bone. However, unlike at a cartilaginous joint, the articular
cartilages of each bone are not continuous with each other.
Instead, the articular cartilage acts like a Teflon® coating over
the bone surface, allowing the articulating bones to move
smoothly against each other without damaging the
underlying bone tissue. Lining the inner surface of the articular
capsule is a thin synovial membrane. The cells of this
membrane secrete synovial fluid (synovia = “a thick fluid”), a
thick, slimy fluid that provides lubrication to further reduce
friction between the bones of the joint. This fluid also provides
nourishment to the articular cartilage, which does not contain
blood vessels. The ability of the bones to move smoothly
against each other within the joint cavity, and the freedom of
joint movement this provides, means that each synovial joint is
functionally classified as a diarthrosis.

Outside of their articulating surfaces, the bones are
connected together by ligaments, which are strong bands of
fibrous connective tissue. These strengthen and support the
joint by anchoring the bones together and preventing their
separation. Ligaments allow for normal movements at a joint,
but limit the range of these motions, thus preventing excessive
or abnormal joint movements. Ligaments are classified based
on their relationship to the fibrous articular capsule. An
extrinsic ligament is located outside of the articular capsule,
an intrinsic ligament is fused to or incorporated into the wall of
the articular capsule, and an intracapsular ligament is located
inside of the articular capsule.

At many synovial joints, additional support is provided by the
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muscles and their tendons that act across the joint. A tendon
is the dense connective tissue structure that attaches a muscle
to bone. As forces acting on a joint increase, the body will
automatically increase the overall strength of contraction of
the muscles crossing that joint, thus allowing the muscle and
its tendon to serve as a “dynamic ligament” to resist forces and
support the joint. This type of indirect support by muscles is
very important at the shoulder joint, for example, where the
ligaments are relatively weak.

Additional Structures Associated with
Synovial Joints

A few synovial joints of the body have a fibrocartilage structure
located between the articulating bones. This is called an
articular disc, which is generally small and oval-shaped, or a
meniscus, which is larger and C-shaped. These structures can
serve several functions, depending on the specific joint. In
some places, an articular disc may act to strongly unite the
bones of the joint to each other. Examples of this include the
articular discs found at the sternoclavicular joint or between
the distal ends of the radius and ulna bones. At other synovial
joints, the disc can provide shock absorption and cushioning
between the bones, which is the function of each meniscus
within the knee joint. Finally, an articular disc can serve to
smooth the movements between the articulating bones, as
seen at the temporomandibular joint. Some synovial joints also
have a fat pad, which can serve as a cushion between the
bones.

Additional structures located outside of a synovial joint serve
to prevent friction between the bones of the joint and the
overlying muscle tendons or skin. A bursa (plural = bursae) is a
thin connective tissue sac filled with lubricating liquid. They are
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located in regions where skin, ligaments, muscles, or muscle
tendons can rub against each other, usually near a body joint
(Figure 2). Bursae reduce friction by separating the adjacent
structures, preventing them from rubbing directly against
each other. Bursae are classified by their location. A
subcutaneous bursa is located between the skin and an
underlying bone. It allows skin to move smoothly over the
bone. Examples include the prepatellar bursa located over the
kneecap and the olecranon bursa at the tip of the elbow. A
submuscular bursa is found between a muscle and an
underlying bone, or between adjacent muscles. These prevent
rubbing of the muscle during movements. A large
submuscular bursa, the trochanteric bursa, is found at the
lateral hip, between the greater trochanter of the femur and
the overlying gluteus maximus muscle. A subtendinous bursa
is found between a tendon and a bone. Examples include the
subacromial bursa that protects the tendon of shoulder muscle
as it passes under the acromion of the scapula, and the
suprapatellar bursa that separates the tendon of the large
anterior thigh muscle from the distal femur just above the
knee.

2.2.2 Synovial Joints | 67



Figure 2. Bursae. Bursae are fluid-filled sacs that serve to prevent
friction between skin, muscle, or tendon and an underlying bone.
Three major bursae and a fat pad are part of the complex joint that
unites the femur and tibia of the leg.

A tendon sheath is similar in structure to a bursa, but smaller.
It is a connective tissue sac that surrounds a muscle tendon
at places where the tendon crosses a joint. It contains a
lubricating fluid that allows for smooth motions of the tendon
during muscle contraction and joint movements.

Types of Synovial Joints

Synovial joints are subdivided based on the shapes of the
articulating surfaces of the bones that form each joint. The
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six types of synovial joints are pivot, hinge, condyloid, saddle,
plane, and ball-and socket-joints (Figure 3).

Figure 3. Types of Synovial Joints. The six types of synovial joints allow
the body to move in a variety of ways. (a) Pivot joints allow for rotation
around an axis, such as between the first and second cervical
vertebrae, which allows for side-to-side rotation of the head. (b) The
hinge joint of the elbow works like a door hinge. (c) The articulation
between the trapezium carpal bone and the first metacarpal bone at
the base of the thumb is a saddle joint. (d) Plane joints, such as those
between the tarsal bones of the foot, allow for limited gliding
movements between bones. (e) The radiocarpal joint of the wrist is a
condyloid joint. (f) The hip and shoulder joints are the only
ball-and-socket joints of the body.
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Pivot Joint

At a pivot joint, a rounded portion of a bone is enclosed within
a ring formed partially by the articulation with another bone
and partially by a ligament (see Figure 3a). The bone rotates
within this ring. Since the rotation is around a single axis, pivot
joints are functionally classified as a uniaxial diarthrosis type of
joint. An example of a pivot joint is the atlantoaxial joint, found
between the C1 (atlas) and C2 (axis) vertebrae. Here, the upward
projecting dens of the axis articulates with the inner aspect of
the atlas, where it is held in place by a ligament. Rotation at this
joint allows you to turn your head from side to side. A second
pivot joint is found at the proximal radioulnar joint. Here, the
head of the radius is largely encircled by a ligament that holds
it in place as it articulates with the radial notch of the ulna.
Rotation of the radius allows for forearm movements.

Hinge Joint

In a hinge joint, the convex end of one bone articulates with
the concave end of the adjoining bone (see Figure 3b). This
type of joint allows only for bending and straightening motions
along a single axis, and thus hinge joints are functionally
classified as uniaxial joints. A good example is the elbow joint,
with the articulation between the trochlea of the humerus and
the trochlear notch of the ulna. Other hinge joints of the body
include the knee, ankle, and interphalangeal joints between
the phalanx bones of the fingers and toes.

Condyloid Joint

At a condyloid joint (ellipsoid joint), the shallow depression
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at the end of one bone articulates with a rounded structure
from an adjacent bone or bones (see Figure 3e). The knuckle
(metacarpophalangeal) joints of the hand between the distal
end of a metacarpal bone and the proximal phalanx bone are
condyloid joints. Another example is the radiocarpal joint of the
wrist, between the shallow depression at the distal end of the
radius bone and the rounded scaphoid, lunate, and triquetrum
carpal bones. In this case, the articulation area has a more
oval (elliptical) shape. Functionally, condyloid joints are biaxial
joints that allow for two planes of movement. One movement
involves the bending and straightening of the fingers or the
anterior-posterior movements of the hand. The second
movement is a side-to-side movement, which allows you to
spread your fingers apart and bring them together, or to move
your hand in a medial-going or lateral-going direction.

Saddle Joint

At a saddle joint, both of the articulating surfaces for the bones
have a saddle shape, which is concave in one direction and
convex in the other (see Figure 3c). This allows the two bones
to fit together like a rider sitting on a saddle. Saddle joints
are functionally classified as biaxial joints. The primary example
is the first carpometacarpal joint, between the trapezium (a
carpal bone) and the first metacarpal bone at the base of the
thumb. This joint provides the thumb the ability to move away
from the palm of the hand along two planes. Thus, the thumb
can move within the same plane as the palm of the hand,
or it can jut out anteriorly, perpendicular to the palm. This
movement of the first carpometacarpal joint is what gives
humans their distinctive “opposable” thumbs. The
sternoclavicular joint is also classified as a saddle joint.
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Plane Joint

At a plane joint (gliding joint), the articulating surfaces of the
bones are flat or slightly curved and of approximately the same
size, which allows the bones to slide against each other (see
Figure 3d). The motion at this type of joint is usually small
and tightly constrained by surrounding ligaments. Based only
on their shape, plane joints can allow multiple movements,
including rotation. Thus plane joints can be functionally
classified as a multiaxial joint. However, not all of these
movements are available to every plane joint due to limitations
placed on it by ligaments or neighboring bones. Thus,
depending upon the specific joint of the body, a plane joint
may exhibit only a single type of movement or several
movements. Plane joints are found between the carpal bones
(intercarpal joints) of the wrist or tarsal bones (intertarsal joints)
of the foot, between the clavicle and acromion of the scapula
(acromioclavicular joint), and between the superior and inferior
articular processes of adjacent vertebrae (zygapophysial joints).

Ball-and-Socket Joint

The joint with the greatest range of motion is the ball-and-
socket joint. At these joints, the rounded head of one bone
(the ball) fits into the concave articulation (the socket) of the
adjacent bone (see Figure 3f). The hip joint and the
glenohumeral (shoulder) joint are the only ball-and-socket
joints of the body. At the hip joint, the head of the femur
articulates with the acetabulum of the hip bone, and at the
shoulder joint, the head of the humerus articulates with the
glenoid cavity of the scapula.

Ball-and-socket joints are classified functionally as multiaxial
joints. The femur and the humerus are able to move in both
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anterior-posterior and medial-lateral directions and they can
also rotate around their long axis. The shallow socket formed by
the glenoid cavity allows the shoulder joint an extensive range
of motion. In contrast, the deep socket of the acetabulum and
the strong supporting ligaments of the hip joint serve to
constrain movements of the femur, reflecting the need for
stability and weight-bearing ability at the hip.

Watch this video to
see an animation of
synovial joints in
action.

Chapter Review

Synovial joints are the most common type of joints in the body.
They are characterized by the presence of a joint cavity, inside
of which the bones of the joint articulate with each other. The
articulating surfaces of the bones at a synovial joint are not
directly connected to each other by connective tissue or
cartilage, which allows the bones to move freely against each
other. The walls of the joint cavity are formed by the articular
capsule. Friction between the bones is reduced by a thin layer
of articular cartilage covering the surfaces of the bones, and
by a lubricating synovial fluid, which is secreted by the synovial
membrane.

Synovial joints are strengthened by the presence of
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ligaments, which hold the bones together and resist excessive
or abnormal movements of the joint. Ligaments are classified
as extrinsic ligaments if they are located outside of the articular
capsule, intrinsic ligaments if they are fused to the wall of the
articular capsule, or intracapsular ligaments if they are located
inside the articular capsule. Some synovial joints also have an
articular disc (meniscus), which can provide padding between
the bones, smooth their movements, or strongly join the bones
together to strengthen the joint. Muscles and their tendons
acting across a joint can also increase their contractile strength
when needed, thus providing indirect support for the joint.

Bursae contain a lubricating fluid that serves to reduce
friction between structures. Subcutaneous bursae prevent
friction between the skin and an underlying bone,
submuscular bursae protect muscles from rubbing against a
bone or another muscle, and a subtendinous bursa prevents
friction between bone and a muscle tendon. Tendon sheaths
contain a lubricating fluid and surround tendons to allow for
smooth movement of the tendon as it crosses a joint.

Based on the shape of the articulating bone surfaces and the
types of movement allowed, synovial joints are classified into
six types. At a pivot joint, one bone is held within a ring by a
ligament and its articulation with a second bone. Pivot joints
only allow for rotation around a single axis. These are found at
the articulation between the C1 (atlas) and the dens of the C2
(axis) vertebrae, which provides the side-to-side rotation of the
head, or at the proximal radioulnar joint between the head of
the radius and the radial notch of the ulna, which allows for
rotation of the radius during forearm movements. Hinge joints,
such as at the elbow, knee, ankle, or interphalangeal joints
between phalanx bones of the fingers and toes, allow only for
bending and straightening of the joint. Pivot and hinge joints
are functionally classified as uniaxial joints.

Condyloid joints are found where the shallow depression of
one bone receives a rounded bony area formed by one or two
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bones. Condyloid joints are found at the base of the fingers
(metacarpophalangeal joints) and at the wrist (radiocarpal
joint). At a saddle joint, the articulating bones fit together like
a rider and a saddle. An example is the first carpometacarpal
joint located at the base of the thumb. Both condyloid and
saddle joints are functionally classified as biaxial joints.

Plane joints are formed between the small, flattened surfaces
of adjacent bones. These joints allow the bones to slide or
rotate against each other, but the range of motion is usually
slight and tightly limited by ligaments or surrounding bones.
This type of joint is found between the articular processes of
adjacent vertebrae, at the acromioclavicular joint, or at the
intercarpal joints of the hand and intertarsal joints of the foot.
Ball-and-socket joints, in which the rounded head of a bone fits
into a large depression or socket, are found at the shoulder and
hip joints. Both plane and ball-and-sockets joints are classified
functionally as multiaxial joints. However, ball-and-socket joints
allow for large movements, while the motions between bones
at a plane joint are small.

Glossary

articular capsule
connective tissue structure that encloses the joint cavity of
a synovial joint

articular cartilage
thin layer of hyaline cartilage that covers the articulating
surfaces of bones at a synovial joint

articular disc
meniscus; a fibrocartilage structure found between the
bones of some synovial joints; provides padding or
smooths movements between the bones; strongly unites
the bones together
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ball-and-socket joint
synovial joint formed between the spherical end of one
bone (the ball) that fits into the depression of a second
bone (the socket); found at the hip and shoulder joints;
functionally classified as a multiaxial joint

bursa
connective tissue sac containing lubricating fluid that
prevents friction between adjacent structures, such as
skin and bone, tendons and bone, or between muscles

condyloid joint
synovial joint in which the shallow depression at the end
of one bone receives a rounded end from a second bone
or a rounded structure formed by two bones; found at the
metacarpophalangeal joints of the fingers or the
radiocarpal joint of the wrist; functionally classified as a
biaxial joint

extrinsic ligament
ligament located outside of the articular capsule of a
synovial joint

hinge joint
synovial joint at which the convex surface of one bone
articulates with the concave surface of a second bone;
includes the elbow, knee, ankle, and interphalangeal
joints; functionally classified as a uniaxial joint

intracapsular ligament
ligament that is located within the articular capsule of a
synovial joint

intrinsic ligament
ligament that is fused to or incorporated into the wall of
the articular capsule of a synovial joint

meniscus
articular disc

pivot joint
synovial joint at which the rounded portion of a bone
rotates within a ring formed by a ligament and an
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articulating bone; functionally classified as uniaxial joint
plane joint

synovial joint formed between the flattened articulating
surfaces of adjacent bones; functionally classified as a
multiaxial joint

proximal radioulnar joint
articulation between head of radius and radial notch of
ulna; uniaxial pivot joint that allows for rotation of radius
during pronation/supination of forearm

saddle joint
synovial joint in which the articulating ends of both bones
are convex and concave in shape, such as at the first
carpometacarpal joint at the base of the thumb;
functionally classified as a biaxial joint

subcutaneous bursa
bursa that prevents friction between skin and an
underlying bone

submuscular bursa
bursa that prevents friction between bone and a muscle
or between adjacent muscles

subtendinous bursa
bursa that prevents friction between bone and a muscle
tendon

synovial fluid
thick, lubricating fluid that fills the interior of a synovial
joint

synovial membrane
thin layer that lines the inner surface of the joint cavity at a
synovial joint; produces the synovial fluid

tendon
dense connective tissue structure that anchors a muscle
to bone

tendon sheath
connective tissue that surrounds a tendon at places where
the tendon crosses a joint; contains a lubricating fluid to
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prevent friction and allow smooth movements of the
tendon.
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12. 2.2.3 Types of Body
Movements

Synovial joints allow the body a tremendous range of
movements. Each movement at a synovial joint results from
the contraction or relaxation of the muscles that are attached
to the bones on either side of the articulation. The type of
movement that can be produced at a synovial joint is
determined by its structural type. While the ball-and-socket
joint gives the greatest range of movement at an individual
joint, in other regions of the body, several joints may work
together to produce a particular movement. Overall, each type
of synovial joint is necessary to provide the body with its great
flexibility and mobility. There are many types of movement that
can occur at synovial joints (Table 1).

Human movements are complex. In order to describe
movements we typically break down the movement and
describe what is occurring at every joint. At each joint, we can
break down the movement into three planes. Planes describe
the direction of the movement. The sagittal plane lies vertically
and divides the body into right and left parts. Forward and
backward movements fall into this plane (flexion, extension).
The frontal plane also lies vertically but divides the body into
anterior and posterior parts. Lateral movements that involves
the limbs moving away and towards the body fall under this
plane (adduction, abduction). The transverse plane lies
horizontally and divides the body into superior and inferior.
Rotations and twisting motions fall under this plane (internal
rotation, external rotation).

An axis is a straight line around which a limb rotates.
Movement at a joint takes place in a plane about an axis. There
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are three axes of rotation that correspond to each of the three
planes:

1. Sagittal plane: medio-lateral axis
2. Frontal plane: anteroposterior axis
3. Transverse plane: longitudinal axis

There is a tendency when describing a movement to refer it
to the particular plane that it is dominated by. For example,
running is often considered to be a movement in the sagittal
plane. In reality, all movements involves movements in more
than one dimension.

Movement types are generally paired, with one being the
opposite of the other. Body movements are always described in
relation to the anatomical position of the body: upright stance,
with upper limbs to the side of body and palms facing forward.
Refer to Figure 1 as you go through this section.

Watch this video to
learn about
anatomical motions.
What motions involve
increasing or
decreasing the angle
of the foot at the
ankle?

Watch this video to learn about anatomical motions. What
motions involve increasing or decreasing the angle of the foot
at the ankle?
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Figure 1. Movements of the Body, Part 1. Synovial joints give the body
many ways in which to move. (a)–(b) Flexion and extension motions
are in the sagittal (anterior–posterior) plane of motion. These
movements take place at the shoulder, hip, elbow, knee, wrist,
metacarpophalangeal, metatarsophalangeal, and interphalangeal
joints. (c)–(d) Anterior bending of the head or vertebral column is
flexion, while any posterior-going movement is extension. (e)
Abduction and adduction are motions of the limbs, hand, fingers, or
toes in the coronal (medial–lateral) plane of movement. Moving the
limb or hand laterally away from the body, or spreading the fingers
or toes, is abduction. Adduction brings the limb or hand toward or
across the midline of the body, or brings the fingers or toes together.
Circumduction is the movement of the limb, hand, or fingers in a
circular pattern, using the sequential combination of flexion,
adduction, extension, and abduction motions. Adduction/abduction
and circumduction take place at the shoulder, hip, wrist,
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metacarpophalangeal, and metatarsophalangeal joints. (f) Turning
of the head side to side or twisting of the body is rotation. Medial and
lateral rotation of the upper limb at the shoulder or lower limb at the
hip involves turning the anterior surface of the limb toward the
midline of the body (medial or internal rotation) or away from the
midline (lateral or external rotation).
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Figure 2. Movements of the Body, Part 2. (g) Supination of the forearm
turns the hand to the palm forward position in which the radius and
ulna are parallel, while forearm pronation turns the hand to the palm
backward position in which the radius crosses over the ulna to form
an “X.” (h) Dorsiflexion of the foot at the ankle joint moves the top of
the foot toward the leg, while plantar flexion lifts the heel and points
the toes. (i) Eversion of the foot moves the bottom (sole) of the foot
away from the midline of the body, while foot inversion faces the sole
toward the midline. (j) Protraction of the mandible pushes the chin
forward, and retraction pulls the chin back. (k) Depression of the
mandible opens the mouth, while elevation closes it. (l) Opposition of
the thumb brings the tip of the thumb into contact with the tip of the
fingers of the same hand and reposition brings the thumb back next
to the index finger.
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Flexion and Extension

Flexion and extension are movements that take place within
the sagittal plane and involve anterior or posterior movements
of the body or limbs. For the vertebral column, flexion (anterior
flexion) is an anterior (forward) bending of the neck or body,
while extension involves a posterior-directed motion, such as
straightening from a flexed position or bending backward.
Lateral flexion is the bending of the neck or body toward the
right or left side. These movements of the vertebral column
involve both the symphysis joint formed by each intervertebral
disc, as well as the plane type of synovial joint formed between
the inferior articular processes of one vertebra and the superior
articular processes of the next lower vertebra.

In the limbs, flexion decreases the angle between the bones
(bending of the joint), while extension increases the angle and
straightens the joint. For the upper limb, all anterior-going
motions are flexion and all posterior-going motions are
extension. These include anterior-posterior movements of the
arm at the shoulder, the forearm at the elbow, the hand at
the wrist, and the fingers at the metacarpophalangeal and
interphalangeal joints. For the thumb, extension moves the
thumb away from the palm of the hand, within the same plane
as the palm, while flexion brings the thumb back against the
index finger or into the palm. These motions take place at
the first carpometacarpal joint. In the lower limb, bringing the
thigh forward and upward is flexion at the hip joint, while any
posterior-going motion of the thigh is extension. Note that
extension of the thigh beyond the anatomical (standing)
position is greatly limited by the ligaments that support the hip
joint. Knee flexion is the bending of the knee to bring the foot
toward the posterior thigh, and extension is the straightening
of the knee. Flexion and extension movements are seen at
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the hinge, condyloid, saddle, and ball-and-socket joints of the
limbs (see Figure 1a-d).

Hyperextension is the abnormal or excessive extension of
a joint beyond its normal range of motion, thus resulting in
injury. Similarly, hyperflexion is excessive flexion at a joint.
Hyperextension injuries are common at hinge joints such as
the knee or elbow. In cases of “whiplash” in which the head
is suddenly moved backward and then forward, a patient may
experience both hyperextension and hyperflexion of the
cervical region.

Abduction and Adduction

Abduction and adduction motions occur within the coronal
plane and involve medial-lateral motions of the limbs, fingers,
toes, or thumb. Abduction moves the limb laterally away from
the midline of the body, while adduction is the opposing
movement that brings the limb toward the body or across
the midline. For example, abduction is raising the arm at the
shoulder joint, moving it laterally away from the body, while
adduction brings the arm down to the side of the body.
Similarly, abduction and adduction at the wrist moves the
hand away from or toward the midline of the body. Spreading
the fingers or toes apart is also abduction, while bringing the
fingers or toes together is adduction. For the thumb, abduction
is the anterior movement that brings the thumb to a 90°
perpendicular position, pointing straight out from the palm.
Adduction moves the thumb back to the anatomical position,
next to the index finger. Abduction and adduction movements
are seen at condyloid, saddle, and ball-and-socket joints (see
Figure 1e).
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Circumduction

Circumduction is the movement of a body region in a circular
manner, in which one end of the body region being moved
stays relatively stationary while the other end describes a circle.
It involves the sequential combination of flexion, adduction,
extension, and abduction at a joint. This type of motion is found
at biaxial condyloid and saddle joints, and at multiaxial ball-
and-sockets joints (see Figure 1e).

Rotation

Rotation can occur within the vertebral column, at a pivot joint,
or at a ball-and-socket joint. Rotation of the neck or body is the
twisting movement produced by the summation of the small
rotational movements available between adjacent vertebrae.
At a pivot joint, one bone rotates in relation to another bone.
This is a uniaxial joint, and thus rotation is the only motion
allowed at a pivot joint. For example, at the atlantoaxial joint,
the first cervical (C1) vertebra (atlas) rotates around the dens,
the upward projection from the second cervical (C2) vertebra
(axis). This allows the head to rotate from side to side as when
shaking the head “no.” The proximal radioulnar joint is a pivot
joint formed by the head of the radius and its articulation with
the ulna. This joint allows for the radius to rotate along its
length during pronation and supination movements of the
forearm.

Rotation can also occur at the ball-and-socket joints of the
shoulder and hip. Here, the humerus and femur rotate around
their long axis, which moves the anterior surface of the arm
or thigh either toward or away from the midline of the body.
Movement that brings the anterior surface of the limb toward
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the midline of the body is called medial (internal) rotation.
Conversely, rotation of the limb so that the anterior surface
moves away from the midline is lateral (external) rotation (see
Figure 1f). Be sure to distinguish medial and lateral rotation,
which can only occur at the multiaxial shoulder and hip joints,
from circumduction, which can occur at either biaxial or
multiaxial joints.

Supination and Pronation

Supination and pronation are movements of the forearm. In
the anatomical position, the upper limb is held next to the body
with the palm facing forward. This is the supinated position of
the forearm. In this position, the radius and ulna are parallel to
each other. When the palm of the hand faces backward, the
forearm is in the pronated position, and the radius and ulna
form an X-shape.

Supination and pronation are the movements of the forearm
that go between these two positions. Pronation is the motion
that moves the forearm from the supinated (anatomical)
position to the pronated (palm backward) position. This motion
is produced by rotation of the radius at the proximal radioulnar
joint, accompanied by movement of the radius at the distal
radioulnar joint. The proximal radioulnar joint is a pivot joint
that allows for rotation of the head of the radius. Because of the
slight curvature of the shaft of the radius, this rotation causes
the distal end of the radius to cross over the distal ulna at
the distal radioulnar joint. This crossing over brings the radius
and ulna into an X-shape position. Supination is the opposite
motion, in which rotation of the radius returns the bones to
their parallel positions and moves the palm to the anterior
facing (supinated) position. It helps to remember that
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supination is the motion you use when scooping up soup with
a spoon (see Figure 2g).

Dorsiflexion and Plantar Flexion

Dorsiflexion and plantar flexion are movements at the ankle
joint, which is a hinge joint. Lifting the front of the foot, so that
the top of the foot moves toward the anterior leg is dorsiflexion,
while lifting the heel of the foot from the ground or pointing
the toes downward is plantar flexion. These are the only
movements available at the ankle joint (see Figure 2h).

Inversion and Eversion

Inversion and eversion are complex movements that involve
the multiple plane joints among the tarsal bones of the
posterior foot (intertarsal joints) and thus are not motions that
take place at the ankle joint. Inversion is the turning of the
foot to angle the bottom of the foot toward the midline, while
eversion turns the bottom of the foot away from the midline.
The foot has a greater range of inversion than eversion motion.
These are important motions that help to stabilize the foot
when walking or running on an uneven surface and aid in
the quick side-to-side changes in direction used during active
sports such as basketball, racquetball, or soccer (see Figure 2i).

Protraction and Retraction

Protraction and retraction are anterior-posterior movements
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of the scapula or mandible. Protraction of the scapula occurs
when the shoulder is moved forward, as when pushing against
something or throwing a ball. Retraction is the opposite
motion, with the scapula being pulled posteriorly and medially,
toward the vertebral column. For the mandible, protraction
occurs when the lower jaw is pushed forward, to stick out the
chin, while retraction pulls the lower jaw backward. (See Figure
2j.)

Depression and Elevation

Depression and elevation are downward and upward
movements of the scapula or mandible. The upward
movement of the scapula and shoulder is elevation, while a
downward movement is depression. These movements are
used to shrug your shoulders. Similarly, elevation of the
mandible is the upward movement of the lower jaw used to
close the mouth or bite on something, and depression is the
downward movement that produces opening of the mouth
(see Figure 2k).

Excursion

Excursion is the side to side movement of the mandible. Lateral
excursion moves the mandible away from the midline, toward
either the right or left side. Medial excursion returns the
mandible to its resting position at the midline.

Superior Rotation and Inferior
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Rotation

Superior and inferior rotation are movements of the scapula
and are defined by the direction of movement of the glenoid
cavity. These motions involve rotation of the scapula around
a point inferior to the scapular spine and are produced by
combinations of muscles acting on the scapula. During
superior rotation, the glenoid cavity moves upward as the
medial end of the scapular spine moves downward. This is
a very important motion that contributes to upper limb
abduction. Without superior rotation of the scapula, the
greater tubercle of the humerus would hit the acromion of
the scapula, thus preventing any abduction of the arm above
shoulder height. Superior rotation of the scapula is thus
required for full abduction of the upper limb. Superior rotation
is also used without arm abduction when carrying a heavy load
with your hand or on your shoulder. You can feel this rotation
when you pick up a load, such as a heavy book bag and carry
it on only one shoulder. To increase its weight-bearing support
for the bag, the shoulder lifts as the scapula superiorly rotates.
Inferior rotation occurs during limb adduction and involves
the downward motion of the glenoid cavity with upward
movement of the medial end of the scapular spine.

Opposition and Reposition

Opposition is the thumb movement that brings the tip of the
thumb in contact with the tip of a finger. This movement is
produced at the first carpometacarpal joint, which is a saddle
joint formed between the trapezium carpal bone and the first
metacarpal bone. Thumb opposition is produced by a
combination of flexion and abduction of the thumb at this
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joint. Returning the thumb to its anatomical position next to
the index finger is called reposition (see Figure 2l).

Movements of the Joints (Table 1)

Type of Joint Movement Example

Pivot Uniaxial joint; allows
rotational movement

Atlantoaxial joint
(C1–C2 vertebrae
articulation); proximal
radioulnar joint

Hinge
Uniaxial joint; allows
flexion/extension
movements

Knee; elbow; ankle;
interphalangeal joints
of fingers and toes

Condyloid

Biaxial joint; allows
flexion/extension,
abduction/adduction,
and circumduction
movements

Metacarpophalangeal
(knuckle) joints of
fingers; radiocarpal
joint of wrist;
metatarsophalangeal
joints for toes

Saddle

Biaxial joint; allows
flexion/extension,
abduction/adduction,
and circumduction
movements

First carpometacarpal
joint of the thumb;
sternoclavicular joint

Plane

Multiaxial joint; allows
inversion and eversion of
foot, or flexion, extension,
and lateral flexion of the
vertebral column

Intertarsal joints of
foot; superior-inferior
articular process
articulations between
vertebrae

Ball-and-socket

Multiaxial joint; allows
flexion/extension,
abduction/adduction,
circumduction, and
medial/lateral rotation
movements

Shoulder and hip joints

Chapter Review

The variety of movements provided by the different types of
synovial joints allows for a large range of body motions and
gives you tremendous mobility. These movements allow you to
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flex or extend your body or limbs, medially rotate and adduct
your arms and flex your elbows to hold a heavy object against
your chest, raise your arms above your head, rotate or shake
your head, and bend to touch the toes (with or without
bending your knees).

Each of the different structural types of synovial joints also
allow for specific motions. The atlantoaxial pivot joint provides
side-to-side rotation of the head, while the proximal radioulnar
articulation allows for rotation of the radius during pronation
and supination of the forearm. Hinge joints, such as at the knee
and elbow, allow only for flexion and extension. Similarly, the
hinge joint of the ankle only allows for dorsiflexion and plantar
flexion of the foot.

Condyloid and saddle joints are biaxial. These allow for flexion
and extension, and abduction and adduction. The sequential
combination of flexion, adduction, extension, and abduction
produces circumduction. Multiaxial plane joints provide for
only small motions, but these can add together over several
adjacent joints to produce body movement, such as inversion
and eversion of the foot. Similarly, plane joints allow for flexion,
extension, and lateral flexion movements of the vertebral
column. The multiaxial ball and socket joints allow for flexion-
extension, abduction-adduction, and circumduction. In
addition, these also allow for medial (internal) and lateral
(external) rotation. Ball-and-socket joints have the greatest
range of motion of all synovial joints.

Interactive Link Questions

Watch this video to learn about anatomical motions. What
motions involve increasing or decreasing the angle of the foot
at the ankle?
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Dorsiflexion of the foot at the ankle decreases the angle of
the ankle joint, while plantar flexion increases the angle of the
ankle joint.

Glossary

abduction
movement in the coronal plane that moves a limb laterally
away from the body; spreading of the fingers

adduction
movement in the coronal plane that moves a limb
medially toward or across the midline of the body;
bringing fingers together

circumduction
circular motion of the arm, thigh, hand, thumb, or finger
that is produced by the sequential combination of flexion,
abduction, extension, and adduction

depression
downward (inferior) motion of the scapula or mandible

dorsiflexion
movement at the ankle that brings the top of the foot
toward the anterior leg

elevation
upward (superior) motion of the scapula or mandible

eversion
foot movement involving the intertarsal joints of the foot
in which the bottom of the foot is turned laterally, away
from the midline

extension
movement in the sagittal plane that increases the angle of
a joint (straightens the joint); motion involving posterior
bending of the vertebral column or returning to the
upright position from a flexed position

2.2.3 Types of Body Movements | 93



flexion
movement in the sagittal plane that decreases the angle
of a joint (bends the joint); motion involving anterior
bending of the vertebral column

hyperextension
excessive extension of joint, beyond the normal range of
movement

hyperflexion
excessive flexion of joint, beyond the normal range of
movement

inferior rotation
movement of the scapula during upper limb adduction in
which the glenoid cavity of the scapula moves in a
downward direction as the medial end of the scapular
spine moves in an upward direction

inversion
foot movement involving the intertarsal joints of the foot
in which the bottom of the foot is turned toward the
midline

lateral excursion
side-to-side movement of the mandible away from the
midline, toward either the right or left side

lateral flexion
bending of the neck or body toward the right or left side

lateral (external) rotation
movement of the arm at the shoulder joint or the thigh at
the hip joint that moves the anterior surface of the limb
away from the midline of the body

medial excursion
side-to-side movement that returns the mandible to the
midline

medial (internal) rotation
movement of the arm at the shoulder joint or the thigh at
the hip joint that brings the anterior surface of the limb
toward the midline of the body
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opposition
thumb movement that brings the tip of the thumb in
contact with the tip of a finger

plantar flexion
foot movement at the ankle in which the heel is lifted off
of the ground

pronated position
forearm position in which the palm faces backward

pronation
forearm motion that moves the palm of the hand from the
palm forward to the palm backward position

protraction
anterior motion of the scapula or mandible

reposition
movement of the thumb from opposition back to the
anatomical position (next to index finger)

retraction
posterior motion of the scapula or mandible

rotation
movement of a bone around a central axis (atlantoaxial
joint) or around its long axis (proximal radioulnar joint;
shoulder or hip joint); twisting of the vertebral column
resulting from the summation of small motions between
adjacent vertebrae

superior rotation
movement of the scapula during upper limb abduction in
which the glenoid cavity of the scapula moves in an
upward direction as the medial end of the scapular spine
moves in a downward direction

supinated position
forearm position in which the palm faces anteriorly
(anatomical position)

supination
forearm motion that moves the palm of the hand from the
palm backward to the palm forward position
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Solutions

Answers for Review Questions

1. A
2. C
3. D
4. A
5. C

Answers for Critical Thinking Questions

1. Ball-and-socket joints are multiaxial joints that
allow for flexion and extension, abduction and
adduction, circumduction, and medial and lateral
rotation.

2. To cross your arms, you need to use both your
shoulder and elbow joints. At the shoulder, the
arm would need to flex and medially rotate. At the
elbow, the forearm would need to be flexed.
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13. 2.2.4 Anatomy of
Selected Synovial
Joints

Each synovial joint of the body is specialized to perform certain
movements. The movements that are allowed are determined
by the structural classification for each joint. For example, a
multiaxial ball-and-socket joint has much more mobility than
a uniaxial hinge joint. However, the ligaments and muscles
that support a joint may place restrictions on the total range
of motion available. Thus, the ball-and-socket joint of the
shoulder has little in the way of ligament support, which gives
the shoulder a very large range of motion. In contrast,
movements at the hip joint are restricted by strong ligaments,
which reduce its range of motion but confer stability during
standing and weight bearing.

This section will examine the anatomy of selected synovial
joints of the body. Anatomical names for most joints are
derived from the names of the bones that articulate at that
joint, although some joints, such as the elbow, hip, and knee
joints are exceptions to this general naming scheme.

Shoulder Joint

The shoulder joint is called the glenohumeral joint. This is a
ball-and-socket joint formed by the articulation between the
head of the humerus and the glenoid cavity of the scapula
(Figure 3). This joint has the largest range of motion of any joint
in the body. However, this freedom of movement is due to the
lack of structural support and thus the enhanced mobility is
offset by a loss of stability.
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Figure 3. Glenohumeral Joint. The glenohumeral (shoulder) joint is a
ball-and-socket joint that provides the widest range of motions. It has
a loose articular capsule and is supported by ligaments and the
rotator cuff muscles.

The large range of motions at the shoulder joint is provided
by the articulation of the large, rounded humeral head with
the small and shallow glenoid cavity, which is only about one
third of the size of the humeral head. The socket formed by
the glenoid cavity is deepened slightly by a small lip of
fibrocartilage called the glenoid labrum, which extends
around the outer margin of the cavity. The articular capsule
that surrounds the glenohumeral joint is relatively thin and
loose to allow for large motions of the upper limb. Some
structural support for the joint is provided by thickenings of
the articular capsule wall that form weak intrinsic ligaments.
These include the coracohumeral ligament, running from the
coracoid process of the scapula to the anterior humerus, and
three ligaments, each called a glenohumeral ligament, located
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on the anterior side of the articular capsule. These ligaments
help to strengthen the superior and anterior capsule walls.

However, the primary support for the shoulder joint is
provided by muscles crossing the joint, particularly the four
rotator cuff muscles. These muscles (supraspinatus,
infraspinatus, teres minor, and subscapularis) arise from the
scapula and attach to the greater or lesser tubercles of the
humerus. As these muscles cross the shoulder joint, their
tendons encircle the head of the humerus and become fused
to the anterior, superior, and posterior walls of the articular
capsule. The thickening of the capsule formed by the fusion
of these four muscle tendons is called the rotator cuff. Two
bursae, the subacromial bursa and the subscapular bursa,
help to prevent friction between the rotator cuff muscle
tendons and the scapula as these tendons cross the
glenohumeral joint. In addition to their individual actions of
moving the upper limb, the rotator cuff muscles also serve to
hold the head of the humerus in position within the glenoid
cavity. By constantly adjusting their strength of contraction to
resist forces acting on the shoulder, these muscles serve as
“dynamic ligaments” and thus provide the primary structural
support for the glenohumeral joint.

Injuries to the shoulder joint are common. Repetitive use
of the upper limb, particularly in abduction such as during
throwing, swimming, or racquet sports, may lead to acute or
chronic inflammation of the bursa or muscle tendons, a tear of
the glenoid labrum, or degeneration or tears of the rotator cuff.
Because the humeral head is strongly supported by muscles
and ligaments around its anterior, superior, and posterior
aspects, most dislocations of the humerus occur in an inferior
direction. This can occur when force is applied to the humerus
when the upper limb is fully abducted, as when diving to catch
a baseball and landing on your hand or elbow. Inflammatory
responses to any shoulder injury can lead to the formation
of scar tissue between the articular capsule and surrounding
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structures, thus reducing shoulder mobility, a condition called
adhesive capsulitis (“frozen shoulder”).

Watch this video for a
tutorial on the
anatomy of the
shoulder joint. What
movements are
available at the
shoulder joint?

Watch this video for a tutorial on the anatomy of the shoulder
joint. What movements are available at the shoulder joint?

Watch this video to
learn more about the
anatomy of the
shoulder joint,
including bones,
joints, muscles,
nerves, and blood
vessels.

Watch this video to learn more about the anatomy of the
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shoulder joint, including bones, joints, muscles, nerves, and
blood vessels. What is the shape of the glenoid labrum in cross-
section, and what is the importance of this shape?

Elbow Joint

The elbow joint is a uniaxial hinge joint formed by the
humeroulnar joint, the articulation between the trochlea of
the humerus and the trochlear notch of the ulna. Also
associated with the elbow are the humeroradial joint and the
proximal radioulnar joint. All three of these joints are enclosed
within a single articular capsule (Figure 4).

The articular capsule of the elbow is thin on its anterior and
posterior aspects, but is thickened along its outside margins
by strong intrinsic ligaments. These ligaments prevent side-
to-side movements and hyperextension. On the medial side is
the triangular ulnar collateral ligament. This arises from the
medial epicondyle of the humerus and attaches to the medial
side of the proximal ulna. The strongest part of this ligament is
the anterior portion, which resists hyperextension of the elbow.
The ulnar collateral ligament may be injured by frequent,
forceful extensions of the forearm, as is seen in baseball
pitchers. Reconstructive surgical repair of this ligament is
referred to as Tommy John surgery, named for the former
major league pitcher who was the first person to have this
treatment.

The lateral side of the elbow is supported by the radial
collateral ligament. This arises from the lateral epicondyle of
the humerus and then blends into the lateral side of the
annular ligament. The annular ligament encircles the head of
the radius. This ligament supports the head of the radius as
it articulates with the radial notch of the ulna at the proximal
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radioulnar joint. This is a pivot joint that allows for rotation of
the radius during supination and pronation of the forearm.

Figure 4. Elbow Joint. (a) The elbow is a hinge joint that allows only for
flexion and extension of the forearm. (b) It is supported by the ulnar
and radial collateral ligaments. (c) The annular ligament supports
the head of the radius at the proximal radioulnar joint, the pivot joint
that allows for rotation of the radius.
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Watch this animation
to learn more about
the anatomy of the
elbow joint. Which
structures provide the
main stability for the
elbow?

Watch this animation to learn more about the anatomy of the
elbow joint. Which structures provide the main stability for the
elbow?

Watch this video to
learn more about the
anatomy of the elbow
joint, including bones,
joints, muscles,
nerves, and blood
vessels. What are the
functions of the
articular cartilage?

Watch this video to learn more about the anatomy of the elbow
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joint, including bones, joints, muscles, nerves, and blood
vessels. What are the functions of the articular cartilage?

Hip Joint

The hip joint is a multiaxial ball-and-socket joint between the
head of the femur and the acetabulum of the hip bone (Figure
5). The hip carries the weight of the body and thus requires
strength and stability during standing and walking. For these
reasons, its range of motion is more limited than at the
shoulder joint.

The acetabulum is the socket portion of the hip joint. This
space is deep and has a large articulation area for the femoral
head, thus giving stability and weight bearing ability to the
joint. The acetabulum is further deepened by the acetabular
labrum, a fibrocartilage lip attached to the outer margin of
the acetabulum. The surrounding articular capsule is strong,
with several thickened areas forming intrinsic ligaments. These
ligaments arise from the hip bone, at the margins of the
acetabulum, and attach to the femur at the base of the neck.
The ligaments are the iliofemoral ligament, pubofemoral
ligament, and ischiofemoral ligament, all of which spiral
around the head and neck of the femur. The ligaments are
tightened by extension at the hip, thus pulling the head of
the femur tightly into the acetabulum when in the upright,
standing position. Very little additional extension of the thigh is
permitted beyond this vertical position. These ligaments thus
stabilize the hip joint and allow you to maintain an upright
standing position with only minimal muscle contraction. Inside
of the articular capsule, the ligament of the head of the femur
(ligamentum teres) spans between the acetabulum and
femoral head. This intracapsular ligament is normally slack and
does not provide any significant joint support, but it does
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provide a pathway for an important artery that supplies the
head of the femur.

The hip is prone to osteoarthritis, and thus was the first joint
for which a replacement prosthesis was developed. A common
injury in elderly individuals, particularly those with weakened
bones due to osteoporosis, is a “broken hip,” which is actually
a fracture of the femoral neck. This may result from a fall, or it
may cause the fall. This can happen as one lower limb is taking
a step and all of the body weight is placed on the other limb,
causing the femoral neck to break and producing a fall. Any
accompanying disruption of the blood supply to the femoral
neck or head can lead to necrosis of these areas, resulting in
bone and cartilage death. Femoral fractures usually require
surgical treatment, after which the patient will need mobility
assistance for a prolonged period, either from family members
or in a long-term care facility. Consequentially, the associated
health care costs of “broken hips” are substantial. In addition,
hip fractures are associated with increased rates of morbidity
(incidences of disease) and mortality (death). Surgery for a hip
fracture followed by prolonged bed rest may lead to life-
threatening complications, including pneumonia, infection of
pressure ulcers (bedsores), and thrombophlebitis (deep vein
thrombosis; blood clot formation) that can result in a
pulmonary embolism (blood clot within the lung).
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Figure 5. Hip Joint. (a) The ball-and-socket joint of the hip is a
multiaxial joint that provides both stability and a wide range
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of motion. (b–c) When standing, the supporting ligaments are
tight, pulling the head of the femur into the acetabulum.

Watch this video for a
tutorial on the
anatomy of the hip
joint. What is a
possible consequence
following a fracture of
the femoral neck
within the capsule of
the hip joint?

Watch this video for a tutorial on the anatomy of the hip joint.
What is a possible consequence following a fracture of the
femoral neck within the capsule of the hip joint?
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Watch this video to
learn more about the
anatomy of the hip
joint, including bones,
joints, muscles,
nerves, and blood
vessels. Where is the
articular cartilage
thickest within the
hip joint?

Watch this video to learn more about the anatomy of the hip
joint, including bones, joints, muscles, nerves, and blood
vessels. Where is the articular cartilage thickest within the hip
joint?

Knee Joint

The knee joint is the largest joint of the body (Figure 6). It
actually consists of three articulations. The femoropatellar
joint is found between the patella and the distal femur. The
medial tibiofemoral joint and lateral tibiofemoral joint are
located between the medial and lateral condyles of the femur
and the medial and lateral condyles of the tibia. All of these
articulations are enclosed within a single articular capsule. The
knee functions as a hinge joint, allowing flexion and extension
of the leg. This action is generated by both rolling and gliding
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motions of the femur on the tibia. In addition, some rotation
of the leg is available when the knee is flexed, but not when
extended. The knee is well constructed for weight bearing in its
extended position, but is vulnerable to injuries associated with
hyperextension, twisting, or blows to the medial or lateral side
of the joint, particularly while weight bearing.

At the femoropatellar joint, the patella slides vertically within
a groove on the distal femur. The patella is a sesamoid bone
incorporated into the tendon of the quadriceps femoris
muscle, the large muscle of the anterior thigh. The patella
serves to protect the quadriceps tendon from friction against
the distal femur. Continuing from the patella to the anterior
tibia just below the knee is the patellar ligament. Acting via
the patella and patellar ligament, the quadriceps femoris is a
powerful muscle that acts to extend the leg at the knee. It
also serves as a “dynamic ligament” to provide very important
support and stabilization for the knee joint.

The medial and lateral tibiofemoral joints are the
articulations between the rounded condyles of the femur and
the relatively flat condyles of the tibia. During flexion and
extension motions, the condyles of the femur both roll and
glide over the surfaces of the tibia. The rolling action produces
flexion or extension, while the gliding action serves to maintain
the femoral condyles centered over the tibial condyles, thus
ensuring maximal bony, weight-bearing support for the femur
in all knee positions. As the knee comes into full extension, the
femur undergoes a slight medial rotation in relation to tibia.
The rotation results because the lateral condyle of the femur
is slightly smaller than the medial condyle. Thus, the lateral
condyle finishes its rolling motion first, followed by the medial
condyle. The resulting small medial rotation of the femur
serves to “lock” the knee into its fully extended and most stable
position. Flexion of the knee is initiated by a slight lateral
rotation of the femur on the tibia, which “unlocks” the knee.
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This lateral rotation motion is produced by the popliteus
muscle of the posterior leg.

Located between the articulating surfaces of the femur and
tibia are two articular discs, the medial meniscus and lateral
meniscus (see Figure 6b). Each is a C-shaped fibrocartilage
structure that is thin along its inside margin and thick along
the outer margin. They are attached to their tibial condyles,
but do not attach to the femur. While both menisci are free
to move during knee motions, the medial meniscus shows less
movement because it is anchored at its outer margin to the
articular capsule and tibial collateral ligament. The menisci
provide padding between the bones and help to fill the gap
between the round femoral condyles and flattened tibial
condyles. Some areas of each meniscus lack an arterial blood
supply and thus these areas heal poorly if damaged.

The knee joint has multiple ligaments that provide support,
particularly in the extended position (see Figure 6c). Outside
of the articular capsule, located at the sides of the knee, are
two extrinsic ligaments. The fibular collateral ligament (lateral
collateral ligament) is on the lateral side and spans from the
lateral epicondyle of the femur to the head of the fibula. The
tibial collateral ligament (medial collateral ligament) of the
medial knee runs from the medial epicondyle of the femur
to the medial tibia. As it crosses the knee, the tibial collateral
ligament is firmly attached on its deep side to the articular
capsule and to the medial meniscus, an important factor when
considering knee injuries. In the fully extended knee position,
both collateral ligaments are taut (tight), thus serving to
stabilize and support the extended knee and preventing side-
to-side or rotational motions between the femur and tibia.

The articular capsule of the posterior knee is thickened by
intrinsic ligaments that help to resist knee hyperextension.
Inside the knee are two intracapsular ligaments, the anterior
cruciate ligament and posterior cruciate ligament. These
ligaments are anchored inferiorly to the tibia at the

110 | 2.2.4 Anatomy of Selected Synovial Joints



intercondylar eminence, the roughened area between the
tibial condyles. The cruciate ligaments are named for whether
they are attached anteriorly or posteriorly to this tibial region.
Each ligament runs diagonally upward to attach to the inner
aspect of a femoral condyle. The cruciate ligaments are named
for the X-shape formed as they pass each other (cruciate
means “cross”). The posterior cruciate ligament is the stronger
ligament. It serves to support the knee when it is flexed and
weight bearing, as when walking downhill. In this position, the
posterior cruciate ligament prevents the femur from sliding
anteriorly off the top of the tibia. The anterior cruciate ligament
becomes tight when the knee is extended, and thus resists
hyperextension.

Figure 6. Knee Joint. (a) The knee joint is the largest joint of the body.
(b)–(c) It is supported by the tibial and fibular collateral ligaments
located on the sides of the knee outside of the articular capsule, and
the anterior and posterior cruciate ligaments found inside the
capsule. The medial and lateral menisci provide padding and support
between the femoral condyles and tibial condyles.
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Watch this video to
learn more about the
flexion and extension
of the knee, as the
femur both rolls and
glides on the tibia to
maintain stable
contact between the
bones in all knee
positions.

Watch this video to learn more about the flexion and extension
of the knee, as the femur both rolls and glides on the tibia
to maintain stable contact between the bones in all knee
positions. The patella glides along a groove on the anterior side
of the distal femur. The collateral ligaments on the sides of
the knee become tight in the fully extended position to help
stabilize the knee. The posterior cruciate ligament supports the
knee when flexed and the anterior cruciate ligament becomes
tight when the knee comes into full extension to resist
hyperextension. What are the ligaments that support the knee
joint?
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Watch this video to
learn more about the
anatomy of the knee
joint, including bones,
joints, muscles,
nerves, and blood
vessels.

Watch this video to learn more about the anatomy of the knee
joint, including bones, joints, muscles, nerves, and blood
vessels. Which ligament of the knee keeps the tibia from
sliding too far forward in relation to the femur and which
ligament keeps the tibia from sliding too far backward?
Disorders of the…

Joints
Injuries to the knee are common. Since this joint is primarily
supported by muscles and ligaments, injuries to any of these
structures will result in pain or knee instability. Injury to the
posterior cruciate ligament occurs when the knee is flexed and
the tibia is driven posteriorly, such as falling and landing on
the tibial tuberosity or hitting the tibia on the dashboard when
not wearing a seatbelt during an automobile accident. More
commonly, injuries occur when forces are applied to the
extended knee, particularly when the foot is planted and
unable to move. Anterior cruciate ligament injuries can result
with a forceful blow to the anterior knee, producing
hyperextension, or when a runner makes a quick change of
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direction that produces both twisting and hyperextension of
the knee.

A worse combination of injuries can occur with a hit to the
lateral side of the extended knee (Figure 7). A moderate blow
to the lateral knee will cause the medial side of the joint to
open, resulting in stretching or damage to the tibial collateral
ligament. Because the medial meniscus is attached to the
tibial collateral ligament, a stronger blow can tear the ligament
and also damage the medial meniscus. This is one reason that
the medial meniscus is 20 times more likely to be injured than
the lateral meniscus. A powerful blow to the lateral knee
produces a “terrible triad” injury, in which there is a sequential
injury to the tibial collateral ligament, medial meniscus, and
anterior cruciate ligament.

Arthroscopic surgery has greatly improved the surgical
treatment of knee injuries and reduced subsequent recovery
times. This procedure involves a small incision and the insertion
into the joint of an arthroscope, a pencil-thin instrument that
allows for visualization of the joint interior. Small surgical
instruments are also inserted via additional incisions. These
tools allow a surgeon to remove or repair a torn meniscus or to
reconstruct a ruptured cruciate ligament. The current method
for anterior cruciate ligament replacement involves using a
portion of the patellar ligament. Holes are drilled into the
cruciate ligament attachment points on the tibia and femur,
and the patellar ligament graft, with small areas of attached
bone still intact at each end, is inserted into these holes. The
bone-to-bone sites at each end of the graft heal rapidly and
strongly, thus enabling a rapid recovery.
Knee Injury
A strong blow to the lateral side of the extended knee will
cause three injuries, in sequence: tearing of the tibial collateral
ligament, damage to the medial meniscus, and rupture of the
anterior cruciate ligament.
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Figure 7. Knee Injury. A strong blow to the lateral side of the extended
knee will cause three injuries, in sequence: tearing of the tibial
collateral ligament, damage to the medial meniscus, and rupture of
the anterior cruciate ligament.

Watch this video to
learn more about
different knee injuries
and diagnostic
testing of the knee.
What are the most
common causes of
anterior cruciate
ligament injury?

Watch this video to learn more about different knee injuries
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and diagnostic testing of the knee. What are the most
common causes of anterior cruciate ligament injury?

Ankle and Foot Joints

The ankle is formed by the talocrural joint (Figure 8). It consists
of the articulations between the talus bone of the foot and the
distal ends of the tibia and fibula of the leg (crural = “leg”).
The superior aspect of the talus bone is square-shaped and
has three areas of articulation. The top of the talus articulates
with the inferior tibia. This is the portion of the ankle joint that
carries the body weight between the leg and foot. The sides
of the talus are firmly held in position by the articulations with
the medial malleolus of the tibia and the lateral malleolus of
the fibula, which prevent any side-to-side motion of the talus.
The ankle is thus a uniaxial hinge joint that allows only for
dorsiflexion and plantar flexion of the foot.

Additional joints between the tarsal bones of the posterior
foot allow for the movements of foot inversion and eversion.
Most important for these movements is the subtalar joint,
located between the talus and calcaneus bones. The joints
between the talus and navicular bones and the calcaneus and
cuboid bones are also important contributors to these
movements. All of the joints between tarsal bones are plane
joints. Together, the small motions that take place at these
joints all contribute to the production of inversion and eversion
foot motions.

Like the hinge joints of the elbow and knee, the talocrural
joint of the ankle is supported by several strong ligaments
located on the sides of the joint. These ligaments extend from
the medial malleolus of the tibia or lateral malleolus of the
fibula and anchor to the talus and calcaneus bones. Since they
are located on the sides of the ankle joint, they allow for
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dorsiflexion and plantar flexion of the foot. They also prevent
abnormal side-to-side and twisting movements of the talus
and calcaneus bones during eversion and inversion of the foot.
On the medial side is the broad deltoid ligament. The deltoid
ligament supports the ankle joint and also resists excessive
eversion of the foot. The lateral side of the ankle has several
smaller ligaments. These include the anterior talofibular
ligament and the posterior talofibular ligament, both of which
span between the talus bone and the lateral malleolus of the
fibula, and the calcaneofibular ligament, located between the
calcaneus bone and fibula. These ligaments support the ankle
and also resist excess inversion of the foot.
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Figure 8. Ankle Joint. The talocrural (ankle) joint is a uniaxial hinge
joint that only allows for dorsiflexion or plantar flexion of the foot.
Movements at the subtalar joint, between the talus and calcaneus
bones, combined with motions at other intertarsal joints, enables
eversion/inversion movements of the foot. Ligaments that unite the
medial or lateral malleolus with the talus and calcaneus bones serve
to support the talocrural joint and to resist excess eversion or
inversion of the foot.
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Watch this video for a
tutorial on the
anatomy of the ankle
joint. What are the
three ligaments
found on the lateral
side of the ankle
joint?

Watch this video for a tutorial on the anatomy of the ankle joint.
What are the three ligaments found on the lateral side of the
ankle joint?

Watch this video to
learn more about the
anatomy of the ankle
joint, including bones,
joints, muscles,
nerves, and blood
vessels. Which type of
joint used in
woodworking does
the ankle joint
resemble?
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Watch this video to learn more about the anatomy of the ankle
joint, including bones, joints, muscles, nerves, and blood
vessels. Which type of joint used in woodworking does the
ankle joint resemble?
Disorders of the…

Joints
The ankle is the most frequently injured joint in the body, with
the most common injury being an inversion ankle sprain. A
sprain is the stretching or tearing of the supporting ligaments.
Excess inversion causes the talus bone to tilt laterally, thus
damaging the ligaments on the lateral side of the ankle. The
anterior talofibular ligament is most commonly injured,
followed by the calcaneofibular ligament. In severe inversion
injuries, the forceful lateral movement of the talus not only
ruptures the lateral ankle ligaments, but also fractures the
distal fibula.

Less common are eversion sprains of the ankle, which involve
stretching of the deltoid ligament on the medial side of the
ankle. Forcible eversion of the foot, for example, with an
awkward landing from a jump or when a football player has a
foot planted and is hit on the lateral ankle, can result in a Pott’s
fracture and dislocation of the ankle joint. In this injury, the
very strong deltoid ligament does not tear, but instead shears
off the medial malleolus of the tibia. This frees the talus, which
moves laterally and fractures the distal fibula. In extreme cases,
the posterior margin of the tibia may also be sheared off.

Above the ankle, the distal ends of the tibia and fibula are
united by a strong syndesmosis formed by the interosseous
membrane and ligaments at the distal tibiofibular joint. These
connections prevent separation between the distal ends of the
tibia and fibula and maintain the talus locked into position
between the medial malleolus and lateral malleolus. Injuries
that produce a lateral twisting of the leg on top of the planted
foot can result in stretching or tearing of the tibiofibular
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ligaments, producing a syndesmotic ankle sprain or “high
ankle sprain.”

Most ankle sprains can be treated using the RICE technique:
Rest, Ice, Compression, and Elevation. Reducing joint mobility
using a brace or cast may be required for a period of time. More
severe injuries involving ligament tears or bone fractures may
require surgery.

Watch this video to
learn more about the
ligaments of the
ankle joint, ankle
sprains, and
treatment.

Watch this video to learn more about the ligaments of the
ankle joint, ankle sprains, and treatment. During an inversion
ankle sprain injury, all three ligaments that resist excessive
inversion of the foot may be injured. What is the sequence in
which these three ligaments are injured?

Chapter Review

Although synovial joints share many common features, each
joint of the body is specialized for certain movements and
activities. The joints of the upper limb provide for large ranges
of motion, which give the upper limb great mobility, thus
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enabling actions such as the throwing of a ball or typing on a
keyboard. The joints of the lower limb are more robust, giving
them greater strength and the stability needed to support the
body weight during running, jumping, or kicking activities.

The glenohumeral (shoulder) joint is a multiaxial ball-and-
socket joint that provides flexion/extension, abduction/
adduction, circumduction, and medial/lateral rotation of the
humerus. The head of the humerus articulates with the glenoid
cavity of the scapula. The glenoid labrum extends around the
margin of the glenoid cavity. Intrinsic ligaments, including the
coracohumeral ligament and glenohumeral ligaments, provide
some support for the shoulder joint. However, the primary
support comes from muscles crossing the joint whose tendons
form the rotator cuff. These muscle tendons are protected from
friction against the scapula by the subacromial bursa and
subscapular bursa.

The elbow is a uniaxial hinge joint that allows for flexion/
extension of the forearm. It includes the humeroulnar joint and
the humeroradial joint. The medial elbow is supported by the
ulnar collateral ligament and the radial collateral ligament
supports the lateral side. These ligaments prevent side-to-side
movements and resist hyperextension of the elbow. The
proximal radioulnar joint is a pivot joint that allows for rotation
of the radius during pronation/supination of the forearm. The
annular ligament surrounds the head of the radius to hold it in
place at this joint.

The hip joint is a ball-and-socket joint whose motions are
more restricted than at the shoulder to provide greater stability
during weight bearing. The hip joint is the articulation between
the head of the femur and the acetabulum of the hip bone.
The acetabulum is deepened by the acetabular labrum. The
iliofemoral, pubofemoral, and ischiofemoral ligaments strongly
support the hip joint in the upright, standing position. The
ligament of the head of the femur provides little support but
carries an important artery that supplies the femur.
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The knee includes three articulations. The femoropatellar
joint is between the patella and distal femur. The patella, a
sesamoid bone incorporated into the tendon of the quadriceps
femoris muscle of the anterior thigh, serves to protect this
tendon from rubbing against the distal femur during knee
movements. The medial and lateral tibiofemoral joints,
between the condyles of the femur and condyles of the tibia,
are modified hinge joints that allow for knee extension and
flexion. During these movements, the condyles of the femur
both roll and glide over the surface of the tibia. As the knee
comes into full extension, a slight medial rotation of the femur
serves to “lock” the knee into its most stable, weight-bearing
position. The reverse motion, a small lateral rotation of the
femur, is required to initiate knee flexion. When the knee is
flexed, some rotation of the leg is available.

Two extrinsic ligaments, the tibial collateral ligament on the
medial side and the fibular collateral ligament on the lateral
side, serve to resist hyperextension or rotation of the extended
knee joint. Two intracapsular ligaments, the anterior cruciate
ligament and posterior cruciate ligament, span between the
tibia and the inner aspects of the femoral condyles. The
anterior cruciate ligament resists hyperextension of the knee,
while the posterior cruciate ligament prevents anterior sliding
of the femur, thus supporting the knee when it is flexed and
weight bearing. The medial and lateral menisci, located
between the femoral and tibial condyles, are articular discs that
provide padding and improve the fit between the bones.

The talocrural joint forms the ankle. It consists of the
articulation between the talus bone and the medial malleolus
of the tibia, the distal end of the tibia, and the lateral malleolus
of the fibula. This is a uniaxial hinge joint that allows only
dorsiflexion and plantar flexion of the foot. Gliding motions at
the subtalar and intertarsal joints of the foot allow for inversion/
eversion of the foot. The ankle joint is supported on the medial
side by the deltoid ligament, which prevents side-to-side
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motions of the talus at the talocrural joint and resists excessive
eversion of the foot. The lateral ankle is supported by the
anterior and posterior talofibular ligaments and the
calcaneofibular ligament. These support the ankle joint and
also resist excess inversion of the foot. An inversion ankle
sprain, a common injury, will result in injury to one or more of
these lateral ankle ligaments.

Interactive Link Questions

The first motion is rotation (hinging) of the mandible, but this
only produces about 20 mm (0.78 in) of mouth opening.

Watch this video for a tutorial on the anatomy of the shoulder
joint. What movements are available at the shoulder joint?

The shoulder joint is a ball-and-socket joint that allows for
flexion-extension, abduction-adduction, medial rotation, lateral
rotation, and circumduction of the humerus.

Watch this video to learn about the anatomy of the shoulder
joint, including bones, joints, muscles, nerves, and blood
vessels. What is the shape of the glenoid labrum in cross-
section, and what is the importance of this shape?

The glenoid labrum is wedge-shaped in cross-section. This is
important because it creates an elevated rim around the
glenoid cavity, which creates a deeper socket for the head of
the humerus to fit into.

Watch this animation to learn more about the anatomy of the
elbow joint. What structures provide the main stability for the
elbow?

The structures that stabilize the elbow include the coronoid
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process, the radial (lateral) collateral ligament, and the anterior
portion of the ulnar (medial) collateral ligament.

Watch this video to learn more about the anatomy of the elbow
joint, including bones, joints, muscles, nerves, and blood
vessels. What are the functions of the articular cartilage?

The articular cartilage functions to absorb shock and to provide
an extremely smooth surface that makes movement between
bones easy, without damaging the bones.

Watch this video for a tutorial on the anatomy of the hip joint.
What is a possible consequence following a fracture of the
femoral neck within the capsule of the hip joint?

An intracapsular fracture of the neck of the femur can result in
disruption of the arterial blood supply to the head of the femur,
which may lead to avascular necrosis of the femoral head.

Watch this video to learn more about the anatomy of the hip
joint, including bones, joints, muscles, nerves, and blood
vessels. Where is the articular cartilage thickest within the hip
joint?

The articular cartilage is thickest in the upper and back part
of the acetabulum, the socket portion of the hip joint. These
regions receive most of the force from the head of the femur
during walking and running.

Watch this video to learn more about the flexion and extension
of the knee, as the femur both rolls and glides on the tibia
to maintain stable contact between the bones in all knee
positions. The patella glides along a groove on the anterior side
of the distal femur. The collateral ligaments on the sides of
the knee become tight in the fully extended position to help
stabilize the knee. The posterior cruciate ligament supports the
knee when flexed and the anterior cruciate ligament becomes
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tight when the knee comes into full extension to resist
hyperextension. What are the ligaments that support the knee
joint?

There are five ligaments associated with the knee joint. The
tibial collateral ligament is located on the medial side of the
knee and the fibular collateral ligament is located on the lateral
side. The anterior and posterior cruciate ligaments are located
inside the knee joint.

Watch this video to learn more about the anatomy of the knee
joint, including bones, joints, muscles, nerves, and blood
vessels. Which ligament of the knee keeps the tibia from
sliding too far forward in relation to the femur and which
ligament keeps the tibia from sliding too far backward?

The anterior cruciate ligament prevents the tibia from sliding
too far forward in relation to the femur and the posterior
cruciate ligament keeps the tibia from sliding too far backward.

Watch this video to learn more about different knee injuries
and diagnostic testing of the knee. What are the most causes
of anterior cruciate ligament injury?

The anterior cruciate ligament (ACL) is most commonly injured
when traumatic force is applied to the knee during a twisting
motion or when side standing or landing from a jump.

Watch this video for a tutorial on the anatomy of the ankle joint.
What are the three ligaments found on the lateral side of the
ankle joint?

The ligaments of the lateral ankle are the anterior and posterior
talofibular ligaments and the calcaneofibular ligament. These
ligaments support the ankle joint and resist excess inversion of
the foot.
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Watch this video to learn more about the anatomy of the ankle
joint, including bones, joints, muscles, nerves, and blood
vessels. The ankle joint resembles what type of joint used in
woodworking?

Because of the square shape of the ankle joint, it has been
compared to a mortise-and-tendon type of joint.

Watch this video to learn about the ligaments of the ankle joint,
ankle sprains, and treatment. During an inversion ankle sprain
injury, all three ligaments that resist excessive inversion of the
foot may be injured. What is the sequence in which these three
ligaments are injured?

An inversion ankle sprain may injure all three ligaments located
on the lateral side of the ankle. The sequence of injury would
be the anterior talofibular ligament first, followed by the
calcaneofibular ligament second, and finally, the posterior
talofibular ligament third.

Review Questions

1. The primary support for the glenohumeral joint is
provided by the ________.

A. coracohumeral ligament
B. glenoid labrum
C. rotator cuff muscles
D. subacromial bursa

2. The proximal radioulnar joint ________.

A. is supported by the annular ligament
B. contains an articular disc that strongly unites
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the bones
C. is supported by the ulnar collateral ligament
D. is a hinge joint that allows for flexion/extension

of the forearm

3. Which statement is true concerning the knee
joint?

A. The lateral meniscus is an intrinsic ligament
located on the lateral side of the knee joint.

B. Hyperextension is resisted by the posterior
cruciate ligament.

C. The anterior cruciate ligament supports the
knee when it is flexed and weight bearing.

D. The medial meniscus is attached to the tibial
collateral ligament.

4. The ankle joint ________.

A. is also called the subtalar joint
B. allows for gliding movements that produce

inversion/eversion of the foot
C. is a uniaxial hinge joint
D. is supported by the tibial collateral ligament on

the lateral side

Critical Thinking Questions

1. Discuss the structures that contribute to support of
the shoulder joint.
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2. Describe the sequence of injuries that may occur if
the extended, weight-bearing knee receives a very
strong blow to the lateral side of the knee.

Glossary

acetabular labrum
lip of fibrocartilage that surrounds outer margin of the
acetabulum on the hip bone

annular ligament
intrinsic ligament of the elbow articular capsule that
surrounds and supports the head of the radius at the
proximal radioulnar joint

anterior cruciate ligament
intracapsular ligament of the knee; extends from anterior,
superior surface of the tibia to the inner aspect of the
lateral condyle of the femur; resists hyperextension of knee

anterior talofibular ligament
intrinsic ligament located on the lateral side of the ankle
joint, between talus bone and lateral malleolus of fibula;
supports talus at the talocrural joint and resists excess
inversion of the foot

calcaneofibular ligament
intrinsic ligament located on the lateral side of the ankle
joint, between the calcaneus bone and lateral malleolus of
the fibula; supports the talus bone at the ankle joint and
resists excess inversion of the foot

coracohumeral ligament
intrinsic ligament of the shoulder joint; runs from the
coracoid process of the scapula to the anterior humerus

2.2.4 Anatomy of Selected Synovial Joints | 129



deltoid ligament
broad intrinsic ligament located on the medial side of the
ankle joint; supports the talus at the talocrural joint and
resists excess eversion of the foot

elbow joint
humeroulnar joint

femoropatellar joint
portion of the knee joint consisting of the articulation
between the distal femur and the patella

fibular collateral ligament
extrinsic ligament of the knee joint that spans from the
lateral epicondyle of the femur to the head of the fibula;
resists hyperextension and rotation of the extended knee

glenohumeral joint
shoulder joint; articulation between the glenoid cavity of
the scapula and head of the humerus; multiaxial ball-and-
socket joint that allows for flexion/extension, abduction/
adduction, circumduction, and medial/lateral rotation of
the humerus

glenohumeral ligament
one of the three intrinsic ligaments of the shoulder joint
that strengthen the anterior articular capsule

glenoid labrum
lip of fibrocartilage located around the outside margin of
the glenoid cavity of the scapula

humeroradial joint
articulation between the capitulum of the humerus and
head of the radius

humeroulnar joint
articulation between the trochlea of humerus and the
trochlear notch of the ulna; uniaxial hinge joint that allows
for flexion/extension of the forearm

iliofemoral ligament
intrinsic ligament spanning from the ilium of the hip bone
to the femur, on the superior-anterior aspect of the hip
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joint
ischiofemoral ligament

intrinsic ligament spanning from the ischium of the hip
bone to the femur, on the posterior aspect of the hip joint

lateral meniscus
C-shaped fibrocartilage articular disc located at the knee,
between the lateral condyle of the femur and the lateral
condyle of the tibia

lateral tibiofemoral joint
portion of the knee consisting of the articulation between
the lateral condyle of the tibia and the lateral condyle of
the femur; allows for flexion/extension at the knee

ligament of the head of the femur
intracapsular ligament that runs from the acetabulum of
the hip bone to the head of the femur

medial meniscus
C-shaped fibrocartilage articular disc located at the knee,
between the medial condyle of the femur and medial
condyle of the tibia

medial tibiofemoral joint
portion of the knee consisting of the articulation between
the medial condyle of the tibia and the medial condyle of
the femur; allows for flexion/extension at the knee

patellar ligament
ligament spanning from the patella to the anterior tibia;
serves as the final attachment for the quadriceps femoris
muscle

posterior cruciate ligament
intracapsular ligament of the knee; extends from the
posterior, superior surface of the tibia to the inner aspect
of the medial condyle of the femur; prevents anterior
displacement of the femur when the knee is flexed and
weight bearing

posterior talofibular ligament
intrinsic ligament located on the lateral side of the ankle
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joint, between the talus bone and lateral malleolus of the
fibula; supports the talus at the talocrural joint and resists
excess inversion of the foot

pubofemoral ligament
intrinsic ligament spanning from the pubis of the hip
bone to the femur, on the anterior-inferior aspect of the
hip joint

radial collateral ligament
intrinsic ligament on the lateral side of the elbow joint;
runs from the lateral epicondyle of humerus to merge
with the annular ligament

rotator cuff
strong connective tissue structure formed by the fusion of
four rotator cuff muscle tendons to the articular capsule of
the shoulder joint; surrounds and supports superior,
anterior, lateral, and posterior sides of the humeral head

subacromial bursa
bursa that protects the supraspinatus muscle tendon and
superior end of the humerus from rubbing against the
acromion of the scapula

subscapular bursa
bursa that prevents rubbing of the subscapularis muscle
tendon against the scapula

subtalar joint
articulation between the talus and calcaneus bones of the
foot; allows motions that contribute to inversion/eversion
of the foot

talocrural joint
ankle joint; articulation between the talus bone of the foot
and medial malleolus of the tibia, distal tibia, and lateral
malleolus of the fibula; a uniaxial hinge joint that allows
only for dorsiflexion and plantar flexion of the foot

tibial collateral ligament
extrinsic ligament of knee joint that spans from the
medial epicondyle of the femur to the medial tibia; resists
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hyperextension and rotation of extended knee
ulnar collateral ligament

intrinsic ligament on the medial side of the elbow joint;
spans from the medial epicondyle of the humerus to the
medial ulna

Solutions

Answers for Review Questions

1. C
2. A
3. D
4. C

Answers for Critical Thinking Questions

1. The shoulder joint allows for a large range of
motion. The primary support for the shoulder
joint is provided by the four rotator cuff muscles.
These muscles serve as “dynamic ligaments” and
thus can modulate their strengths of contraction
as needed to hold the head of the humerus in
position at the glenoid fossa. Additional but
weaker support comes from the coracohumeral
ligament, an intrinsic ligament that supports the
superior aspect of the shoulder joint, and the
glenohumeral ligaments, which are intrinsic
ligaments that support the anterior side of the
joint.

2. A strong blow to the lateral side of the extended
knee will cause the medial side of the knee joint
to open, resulting in a sequence of three injuries.
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First will be damage to the tibial collateral
ligament. Since the medial meniscus is attached
to the tibial collateral ligament, the meniscus is
also injured. The third structure injured would be
the anterior cruciate ligament.
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14. 2.3 Muscular
Anatomy

Figure 1. A Body in Motion. The muscular system allows us to move,
flex and contort our bodies. Practicing yoga, as pictured here, is a
good example of the voluntary use of the muscular system. (credit:
Dmitry Yanchylenko)

Think about the things that you do each day—talking, walking,
sitting, standing, and running—all of these activities require
movement of particular skeletal muscles. Skeletal muscles are
even used during sleep. The diaphragm is a sheet of skeletal
muscle that has to contract and relax for you to breathe day
and night. If you recall from your study of the skeletal system
and joints, body movement occurs around the joints in the
body. The focus of this chapter is on skeletal muscle
organization. The system to name skeletal muscles will be
explained; in some cases, the muscle is named by its shape,
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and in other cases it is named by its location or attachments
to the skeleton. If you understand the meaning of the name of
the muscle, often it will help you remember its location and/or
what it does.
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15. 2.3.1 Naming
Skeletal Muscles

The Greeks and Romans conducted the first studies done on
the human body in Western culture. The educated class of
subsequent societies studied Latin and Greek, and therefore
the early pioneers of anatomy continued to apply Latin and
Greek terminology or roots when they named the skeletal
muscles. The large number of muscles in the body and
unfamiliar words can make learning the names of the muscles
in the body seem daunting, but understanding the etymology
can help. Etymology is the study of how the root of a particular
word entered a language and how the use of the word evolved
over time. Taking the time to learn the root of the words is
crucial to understanding the vocabulary of anatomy and
physiology. When you understand the names of muscles it will
help you remember where the muscles are located and what
they do (Figure 1, Figure 2, and Table 2). Pronunciation of words
and terms will take a bit of time to master, but after you have
some basic information; the correct names and pronunciations
will become easier.
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Figure 1. Overview of the Muscular System. On the anterior and
posterior views of the muscular system above, superficial muscles
(those at the surface) are shown on the right side of the body while
deep muscles (those underneath the superficial muscles) are shown
on the left half of the body. For the legs, superficial muscles are
shown in the anterior view while the posterior view shows both
superficial and deep muscles.

Figure 2. Understanding a Muscle Name from the Latin
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Mnemonic Device for Latin Roots (Table 2)

Example Latin or Greek
Translation Mnemonic Device

ad to; toward ADvance toward your goal

ab away from n/a

sub under SUBmarines move under water.

ductor something
that moves A conDUCTOR makes a train move.

anti against If you are antisocial, you are against
engaging in social activities.

epi on top of n/a

apo to the side of n/a

longissimus longest “Longissimus” is longer than the
word “long.”

longus long long

brevis short brief

maximus large max

medius medium “Medius” and “medium” both begin
with “med.”

minimus tiny; little mini

rectus straight To RECTify a situation is to straighten
it out.

multi many If something is MULTIcolored, it has
many colors.

uni one A UNIcorn has one horn.

bi/di two If a ring is DIcast, it is made of two
metals.

tri three TRIple the amount of money is three
times as much.

quad four QUADruplets are four children born
at one birth.

externus outside EXternal

internus inside INternal

Anatomists name the skeletal muscles according to a number
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of criteria, each of which describes the muscle in some way.
These include naming the muscle after its shape, its size
compared to other muscles in the area, its location in the body
or the location of its attachments to the skeleton, how many
origins it has, or its action.

The skeletal muscle’s anatomical location or its relationship
to a particular bone often determines its name. For example,
the frontalis muscle is located on top of the frontal bone of the
skull. Similarly, the shapes of some muscles are very distinctive
and the names, such as orbicularis, reflect the shape. For the
buttocks, the size of the muscles influences the names: gluteus
maximus (largest), gluteus medius (medium), and the gluteus
minimus (smallest). Names were given to indicate
length—brevis (short), longus (long)—and to identify position
relative to the midline: lateralis (to the outside away from the
midline), and medialis (toward the midline). The direction of
the muscle fibers and fascicles are used to describe muscles
relative to the midline, such as the rectus (straight) abdominis,
or the oblique (at an angle) muscles of the abdomen.

Some muscle names indicate the number of muscles in a
group. One example of this is the quadriceps, a group of four
muscles located on the anterior (front) thigh. Other muscle
names can provide information as to how many origins a
particular muscle has, such as the biceps brachii. The prefix
bi indicates that the muscle has two origins and tri indicates
three origins.

The location of a muscle’s attachment can also appear in
its name. When the name of a muscle is based on the
attachments, the origin is always named first. For instance,
the sternocleidomastoid muscle of the neck has a dual origin
on the sternum (sterno) and clavicle (cleido), and it inserts on
the mastoid process of the temporal bone. The last feature by
which to name a muscle is its action. When muscles are named
for the movement they produce, one can find action words in
their name. Some examples are flexor (decreases the angle at
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the joint), extensor (increases the angle at the joint), abductor
(moves the bone away from the midline), or adductor (moves
the bone toward the midline).

Chapter Review

Muscle names are based on many characteristics. The location
of a muscle in the body is important. Some muscles are named
based on their size and location, such as the gluteal muscles of
the buttocks. Other muscle names can indicate the location in
the body or bones with which the muscle is associated, such as
the tibialis anterior. The shapes of some muscles are distinctive;
for example, the direction of the muscle fibers is used to
describe muscles of the body midline. The origin and/or
insertion can also be features used to name a muscle;
examples are the biceps brachii, triceps brachii, and the
pectoralis major.

Glossary

abductor
moves the bone away from the midline

adductor
moves the bone toward the midline

bi
two

brevis
short

extensor
muscle that increases the angle at the joint
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flexor
muscle that decreases the angle at the joint

lateralis
to the outside

longus
long

maximus
largest

medialis
to the inside

medius
medium

minimus
smallest

oblique
at an angle

rectus
straight

tri
three

Solutions

Answers for Review Questions

1. A
2. C
3. D
4. C

Answers for Critical Thinking Questions

1. In anatomy and physiology, many word roots
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are Latin or Greek. Portions, or roots, of the word
give us clues about the function, shape, action, or
location of a muscle.
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16. 2.4 Human
Dimensions and Joint
Angles

It is sometimes important to know the person you are
assessing’s height or limb length. The following are brief
description of the measurements:

Height (Length)

Height is a common body measurement typically measured
in meters (m) or centimeters (cm). These are length
measurements, so the SI unit would be meters. Height is
typically measured with the participant standing straight, near
a wall, with both feet flat on the ground.

Segment Length

Segments are measured in centimeters (cm) or millimeters
(mm). Each segment (limb) is measured by identifying bony
protuberances on each end of the segment. For example, the
length of the tibia is measured from the medial condyle at the
knee to the medial malleolus at the ankle. The fibula would be
measured from the head of the fibula at the knee to the lateral
malleolus at the ankle.
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Joint Angles

Biomechanists quantify different types of joint angles:

1. Relative – This represents the angle between two
segments. It can also be called a joint angle. For example,
the angle between the shank (lower leg) and foot is called
the ankle angle. There are two sub-types:

1. Included: The absolute angle between two segments
2. Anatomical: The angle between two segments relative

to the anatomical position.
2. Absolute – An absolute angle, also called a segment angle,

is the angle of a segment relative to the perfect horizontal.
It is calculated by drawing a horizontal line at the distal
end of the segment and measuring the angle from the
right horizontal to the segment in a counterclockwise
direction.

Range of Motion

Range of motion is a common body measurement, especially
while diagnosing injury or disease, tracking progress during
physical therapy, or working to improve flexibility or form. It
is usually measured with a goniometer. Range of motion is
calculate in each plane of movement respectively (sagittal,
frontal or transverse). Range of motion can be defined as an
angle measured in degrees (°)through which a joint moves
away from a reference position as seen in this video
demonstration of how to use a goniometer for range of motion
measurement. It can also be measured as the difference
between two extremes of motion (relative abduction vs
adduction angle for example).
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For example, to calculate the total range of motion at the
knee in the sagittal plane you measure the angle between the
thigh and the lower leg (knee angle) at full extension. You then
measure the same knee angle at full flexion. The difference
between full extension and full flexion, represents the range of
motion at the knee.

Range of motion is an important predictor of injury
prevention and performance in many sport. For example, the
range of motion at the Hallux (the big toe) should be 75-85
degrees for extension and 35-45 degrees for flexion. A
reduction in range of motion can lead to pain (toe, knee and
hip) and difficulty with certain activities such as squatting and
running. An ideal range of motion was established for each
joint and can be found in Physical Therapy manuals.

Reinforcement Activity

What range of motion do you have at the shoulder?
Is the range of motion on your left side the same as
your right? How could you explain a difference
between the range of motion of the right and left side?

2.4 Human Dimensions and Joint Angles | 147





PART III

CHAPTER 3: LINEAR
KINEMATICS IN
ONE-DIMENSION

Chapter Objectives

After this chapter, you will be able to:

• Define the term ‘kinematics’
• Be able to describe movement in one

dimension with time, displacement, velocity and
acceleration

• Differentiate between vector and scalar
variables

• Identify coordinates within a coordinate system
• Graphically analyze movement in one-

dimension
• Predict the trajectory of projectiles

In this Chapter we will begin our discussion of kinematics.
Remember that kinematics is concerned with the description
of motion. The outcome of many sporting events are kinematic
measures therefore an understanding of those measures and
the way to appropriately report them is mandatory in a
biomechanics course. For example, a 100-m winner is
determined by the time is takes to complete the distance. A
high jumper wins by jumping a longer displacement than his/
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her opponent. Time and displacement are both kinematic
measures. We will also discuss speed, velocity and
acceleration as variables used to describe movement. At the
end of this chapter you will be able to manipulate these
variables to predict the movement of a projectile.
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17. 3.0 Introduction

Figure 1. The results of many track and field events are the outcome
of kinematic variables. Runners will try to cover the distance in the
shortest time possible whereas jumpers will attempt to cover a
greater displacement than their opponent.

Movement is everywhere we look. When we approach the
topic of human movement, we can consider the movement
of the body itself (walking, jumping etc..) or of object’s that
move as a consequence of human motion (tennis ball, hockey
stick etc..). Questions about motion are interesting in and of
themselves: How long will it take for me to walk to work this
morning? Where will a football land if it is thrown at a certain
angle? But an understanding of motion is also key to
understanding other concepts in biomechanics. An
understanding of acceleration, for example, is crucial to the
study of force.
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Our formal study of biomechanics begins with kinematics
which is defined as the study of motion without considering
its causes. The word “kinematics” comes from a Greek term
meaning motion and is related to other English words such
as “cinema” (movies) and “kinesiology” (the study of human
motion).

Movement can be separated into two main types: Linear and
Angular. Linear motion refers to motion of a body along a
straight or curved line. Angular motion refers to the movement
of a body about a fixed axis. Let’s begin with the analysis of
linear movement.

In this chapter, we examine the simplest type of
motion—namely, motion along a straight line, or one-
dimensional motion. In following chapters, we apply concepts
developed here to study motion along curved paths (two-
dimensional motion); for example, that of a bicycle rounding a
curve.
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18. 3.1 Displacement

Figure 1. These cyclists can be described by their position relative to
each other or to the start line. Their motion can be described by their
change in position, or displacement, in the frame of reference. (credit:
Boris Stefanik, Unsplash).

Position

In order to describe the motion of an object or body, you must
first be able to describe its position—where it is at any
particular time. More precisely, you need to specify its position
relative to a convenient reference frame. Earth is often used
as a reference frame, and we often describe the position of
an object as it relates to stationary objects in that reference
frame. For example, a high jump would be described in terms
of the position of the jumper with respect to the Earth as a
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whole, while a professor’s position could be described in terms
of where she is in relation to the nearby white board. In other
cases, we use reference frames that are not stationary but are
in motion relative to the Earth. To describe the position of a
person in an airplane, for example, we use the airplane, not
the Earth, as the reference frame. In biomechanics, we typically
agree on a reference frame relative to an origin. If we are
describing motion based off a picture or video, we use the
bottom left-hand corner as our origin and describe movement
relative to that point.Please see the figures 2 and 3 below.

Displacement

If an object moves relative to a reference frame (for example,
if a professor moves to the right relative to a white board or
a passenger moves toward the rear of an airplane), then the
object’s position changes. This change in position is known as
displacement. The word “displacement” implies that an object
has moved, or has been displaced.

DISPLACEMENT

Displacement is the change in position of an
object:
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where Δp is displacement, pf is the final position
(f), and pi is the initial position (i).

In this text the upper case Greek letter Δ (delta) always means

“change in” whatever quantity follows it; thus, means

change in position. Always solve for displacement by

subtracting initial position ( ) from final position ( ).

Note that the standard unit for displacement is the meter
(m), but sometimes kilometers, miles, feet, and other units of
length are used. Keep in mind that when units other than the
meter are used in a problem, you may need to convert them
into meters to complete the calculation.
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Figure 2. A professor paces left and right while lecturing. Her position
relative to Earth is given by p x. The +2.0 m displacement of the
professor relative to Earth is represented by an arrow pointing to the
right. Note: this figure uses the symbols x instead of px to denote
position. Both conventions can be used.
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Figure 3. A passenger moves from his seat to the back of the plane.
His location relative to the airplane is given by px. The -4.0-m
displacement of the passenger relative to the plane is represented by
an arrow toward the rear of the plane. Notice that the arrow
representing his displacement is twice as long as the arrow
representing the displacement of the professor shown above (he
moves twice as far). Note: this figure uses the symbols x instead of
px to denote position. Both conventions can be used.

Note that displacement has a direction as well as a magnitude.
The professor’s displacement is 2.0 m to the right, and the
airline passenger’s displacement is 4.0 m toward the rear. In
one-dimensional motion, direction can be specified with a plus
or minus sign. When you begin a problem, you should select
which direction is positive (usually that will be to the right or up,
but you are free to select positive as being any direction). The
professor’s initial position is pxi = 1.5 m and her final position is
pxf = 3.5 m. Thus her horizontal displacement is
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In this coordinate system, motion to the right is positive,
whereas motion to the left is negative. Similarly, the airplane
passenger’s initial position is pxi = 6.0 m and his final position is
pxf = 2.0 m, so his displacement is

His displacement is negative because his motion is toward the
rear of the plane, or in the negative x direction in our coordinate
system.

Note that movement in the vertical direction (up and down)
would by specified with a ‘y’ instead of an ‘x’. For example, if a
jump moves from 0 m to 0.35 m, her displacement would be
calculated as follows:

More details on the symbols ‘x’ for horizontal movements and
‘y’ for vertical movements will be provided in the next section
when we introduce coordinate systems.

Distance

Although displacement is described in terms of direction,
distance is not. Distance is defined to be the magnitude or size
of displacement between two positions. Note that the distance
between two positions is not the same as the distance traveled
between them. Distance traveled is the total length of the
path traveled between two positions. Distance has no direction
and, thus, no sign. For example, the distance the professor
walks is 2.0 m. The distance the airplane passenger walks is 4.0
m.
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MISCONCEPTION ALERT:
DISTANCE TRAVELED VS.
MAGNITUDE OF DISPLACEMENT

It is important to note that the distance traveled,
however, can be greater than the magnitude of the
displacement (by magnitude, we mean just the size
of the displacement without regard to its direction;
that is, just a number with a unit). For example, the
professor could pace back and forth many times,
perhaps walking a distance of 150 m during a
lecture, yet still end up only 2.0 m to the right of her
starting point. In this case her displacement would
be +2.0 m, the magnitude of her displacement
would be 2.0 m, but the distance she traveled would
be 150 m. In kinematics we nearly always deal with
displacement and magnitude of displacement, and
almost never with distance traveled. One way to
think about this is to assume you marked the start
of the motion and the end of the motion. The
displacement is simply the difference in the position
of the two marks and is independent of the path
taken in traveling between the two marks. The
distance traveled, however, is the total length of the
path taken between the two marks.
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Check Your Understanding 1

1: A cyclist rides 3 km west and then turns around and
rides 2 km east. (a) What is her displacement? (b) What
distance does she ride? (c) What is the magnitude of
her displacement?

Section Summary

• Kinematics is the study of motion without considering its
causes. In this chapter, it is limited to motion along a
straight line, called one-dimensional motion.

• Displacement is the change in position of an object.

• In symbols, displacement is defined to be

where is the initial position and is the final

position. In this text, the Greek letter Δ (delta) always
means “change in” what ever quantity follows it. The SI
unit for displacement is the meter (m). Displacement has
a direction as well as a magnitude.

If you are describing movement along the horizontal axis (left
to right or right to left) you can express the equation relative to
the ‘x’ axis:

If you are describing movement along the vertical axis (up
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and down, down and up) you can express the equation relative
to the ‘y’ axis:

• When you start a problem, assign which direction will be
positive (typically ‘right’ or ‘up’).

• Distance is the length of the path travelled
• Displacement is the difference between the final position

and the initial position.

Problems & Exercises
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Four objects travelling along a one dimensional path, with
the distance axis labelled.

1: Find the following for path A: (a) The distance
traveled. (b) The magnitude of the displacement from
start to finish. (c) The displacement from start to finish.

2: Find the following for path B: (a) The distance
traveled. (b) The magnitude of the displacement from
start to finish. (c) The displacement from start to finish.

3: Find the following for path C: (a) The distance
traveled. (b) The magnitude of the displacement from
start to finish. (c) The displacement from start to finish.

4: Find the following for path D: (a) The distance
traveled. (b) The magnitude of the displacement from
start to finish. (c) The displacement from start to finish.
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Glossary

kinematics
the study of motion without considering its causes

position
the location of an object at a particular time

displacement
the change in position of an object

distance
the magnitude of displacement between two positions

distance traveled
the total length of the path traveled between two
positions

Solutions

Check Your Understanding 1

Figure 5.

1: (a) The rider’s displacement is

. The displacement is negative

because we take east to be positive and west to be
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negative. Or you could just say “1 km to the West”.
Note that the drawing clearly showed that West was

chosen to be negative. (b) The distance traveled is 3
km + 2 km = 5 km. (c) The magnitude of the
displacement is 1 km.

Problems & Exercises

1: (a) 7 m (b) 7 m (c) + 7 m

2: (a) 5 m (b) 5 m (c) – 5 m

3: This is badly drawn so the answers are debatable.
Assuming it went from a position of 2 m to 10 then

back to 8 and then back again to 10 m that gives a)
distance of 12 m b) magnitude of the displacement as 8
m and c) a displacement of +8 m or 8 metres ot the
right.

4: (a) 8 m (b) 4 m (c) – 4 m
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19. 3.2 Vectors, Scalars,
and Coordinate
Systems

Figure 1. The motion of this skateboarder can be described in terms
of the distance he traveled (a scalar quantity) or his displacement
in a specific direction (a vector quantity). In order to specify the
direction of motion, its displacement must be described based on
a coordinate system. (credit: Julien Lanoy, Unsplash).

What is the difference between distance and displacement?
Whereas displacement is defined by both direction and
magnitude, distance is defined only by magnitude.
Displacement is an example of a vector quantity. Distance is an
example of a scalar quantity. A vector is any quantity with both
magnitude and direction. Other examples of vectors include a
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velocity of 90 km/h east and a force of 500 newtons straight
down.

The direction of a vector in one-dimensional motion is given
simply by a plus (+) or minus (−) sign. Vectors are represented
graphically by arrows. An arrow used to represent a vector has
a length proportional to the vector’s magnitude (e.g., the larger
the magnitude, the longer the length of the vector) and points
in the same direction as the vector. When writing a vector
quantity, a horizontal arrow is used over the top of the variable.

For example, indicates that position is a vector variable,

having both a magnitude and direction associated with it.
Some physical quantities, like distance, either have no

direction or none is specified. A scalar is any quantity that has a
magnitude, but no direction. For example, a 20 °C temperature,
the 250 kilocalories (250 Calories) of energy in a candy bar, a
90 km/h speed limit, a person’s 1.8 m height, and a distance
of 2.0 m are all scalars—quantities with no specified direction.
Note, however, that a scalar can be negative, such as a -20 °C
temperature. In this case, the minus sign indicates a point on a
scale rather than a direction. Scalars are never represented by
arrows.

Coordinate Systems for
One-Dimensional Motion

In order to describe the direction of a vector quantity, you must
designate a coordinate system within the reference frame. For
one-dimensional motion, this is a simple coordinate system
consisting of a one-dimensional coordinate line. In general,
when describing horizontal motion, motion to the right is
usually considered positive, and motion to the left is considered
negative. With vertical motion, motion up is usually positive
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and motion down is negative. In some cases, however, as with
the jet shown above, it can be more convenient to switch the
positive and negative directions. For example, if you are
analyzing the motion of falling objects, it can be useful to
define downwards as the positive direction. If people in a race
are running to the left, it is useful to define left as the positive
direction. It does not matter as long as the system is clear
and consistent. Once you assign a positive direction and start
solving a problem, you cannot change it.
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Figure 2. It is usually convenient to consider
motion upward or to the right as positive (+)
and motion downward or to the left as
negative (−).

This are called the Cartesian Coordinates in honour of Rene
Descartes who first proposed them in the 17th Century.

Section Summary

• A vector is any quantity that has magnitude and direction.
• A scalar is any quantity that has magnitude but no

direction.
• Displacement and velocity are vectors, whereas distance

and speed are scalars.
• In one-dimensional motion, direction is specified by a plus

or minus sign to signify left or right, up or down, and the
like.
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Conceptual Questions

1: A student writes, “A diver heads towards the water
at a speed of -10 m/s.” What is wrong with the
student’s statement? What has the student actually
described? Explain.

2: What is the speed of the diver in the previous
question?

3: Acceleration is the change in velocity over time.
Given this information, is acceleration a vector or a
scalar quantity? Explain.

4: A weather forecast states that the temperature is
predicted to be -5 °C the following day. Is this
temperature a vector or a scalar quantity? Explain.

Glossary

scalar
a quantity that is described by magnitude, but not
direction

vector
a quantity that is described by both magnitude and
direction
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Solutions

Check Your Understanding: Conceptual Questions

1: Speed is a scalar quantity. It does not
change at all with direction changes;
therefore, it has magnitude only. If it were
a vector quantity, it would change as
direction changes (even if its magnitude
remained constant).

2. The speed is 10 m/s.

3. A vector

4. Scalar. Temperature doesn’t have a direction. The –
means “less than”.
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20. 3.3 Time, Velocity,
and Speed

Figure 1. The motion of these racing longboarders can be described
by their speeds and their velocities. (credit: Alternate Skate, Unsplash).

There is more to motion than distance and displacement.
Questions such as, “How long does a foot race take?” and
“What was the runner’s speed?” cannot be answered without
an understanding of other concepts. In this section we add
definitions of time, velocity, and speed to expand our
description of motion.

Time

As discussed earlier, the most fundamental physical quantities
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are defined by how they are measured. This is the case with
time. Every measurement of time involves measuring a change
in some physical quantity. In biomechanics, the definition of
time is simple—time is change, or the interval over which
change occurs. It is impossible to know that time has passed
unless something changes.

The amount of time or change is calibrated by comparison
with a standard. The standard unit for time is the second,
abbreviated ‘s’.

How does time relate to motion? We are usually interested
in elapsed time for a particular motion, such as how long it
takes an airplane passenger to get from his seat to the back
of the plane. To find elapsed time, we note the time at the
beginning and end of the motion and subtract the two. For
example, a lecture may start at 11:00 A.M. and end at 11:50 A.M.,
so that the elapsed time would be 50 min. Elapsed time Δt is
the difference between the ending time and beginning time,

Δt = tf – ti

where Δt is the change in time or elapsed time, tf is the time
at the end of the motion, and ti is the time at the beginning of
the motion. (As usual, the delta symbol, Δ, means the change
in the quantity that follows it.)

Life is simpler if the beginning time ti is taken to be zero,
as when we use a stopwatch. If we were using a stopwatch, it
would simply read zero at the start of the lecture and 50 min at
the end. If ti=0, then Δt = tf ≡ t.

In this text, for simplicity’s sake,

• motion starts at time equal to zero ti = 0
• the symbol t is used for elapsed time unless otherwise

specified ( Δt = ti = t )
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Velocity

Your notion of velocity is probably the same as its scientific
definition. You know that if you have a large displacement in
a small amount of time you have a large velocity, and that
velocity has units of distance divided by time, such as
kilometers per hour.

AVERAGE VELOCITY

Average velocity is displacement (change in
position) divided by the time of travel,

where is velocity, is the change in

position (or displacement), and and are the

final and beginning positions at times tf and ti,
respectively. If the starting time ti is taken to be zero,
then the average velocity is simply

Notice that this definition indicates that velocity is a vector
because displacement is a vector. It has both magnitude and
direction. The standard unit for velocity is meters per second or
m/s, but many other units, such as km/h, mi/h (also written as
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mph), and cm/s, are in common use. Suppose, for example, an
airplane passenger took 5 seconds to move −4 m (the negative
sign indicates that displacement is toward the back of the
plane). His average velocity would be

The minus sign indicates the average velocity is also toward the
rear of the plane.

The average velocity of an object does not tell us anything
about what happens to it between the starting point and
ending point, however. For example, we cannot tell from
average velocity whether the airplane passenger stops
momentarily or backs up before he goes to the back of the
plane. To get more details, we must consider smaller segments
of the trip over smaller time intervals.

Figure 2. A more detailed record of an airplane passenger
heading toward the back of the plane, showing smaller
segments of his trip. Note: this figure uses the symbols x
instead of px to denote position. Both conventions can be used.

The smaller the time intervals considered in a motion, the more
detailed the information. When we carry this process to its

174 | 3.3 Time, Velocity, and Speed



logical conclusion, we are left with an infinitesimally small
interval. Over such an interval, the average velocity becomes
the instantaneous velocity or the velocity at a specific instant.
A car’s speedometer, for example, shows the magnitude (but
not the direction) of the instantaneous velocity of the car.
(Police give tickets based on instantaneous velocity, but when
calculating how long it will take to get from one place to
another on a road trip, you need to use average velocity.)

Instantaneous velocity, , is the average velocity at a specific

instant in time (or over an infinitesimally small time interval).

Mathematically, finding instantaneous velocity, , at a

precise instant t can involve taking a limit, a calculus operation
beyond the scope of this text. However, under many
circumstances, we can find precise values for instantaneous
velocity without calculus.

Speed

In everyday language, most people use the terms “speed” and
“velocity” interchangeably. In biomechanics, however, they do
not have the same meaning and they are distinct concepts.
One major difference is that speed has no direction. Thus
speed is a scalar. Just as we need to distinguish between
instantaneous velocity and average velocity, we also need to
distinguish between instantaneous speed and average speed.

Instantaneous speed is the magnitude of instantaneous
velocity. For example, suppose the airplane passenger at one
instant had an instantaneous velocity of −3.0 m/s (the minus
meaning toward the rear of the plane). At that same time his
instantaneous speed was 3.0 m/s. Or suppose that at one time
during a shopping trip your instantaneous velocity is 40 km/
h due north. Your instantaneous speed at that instant would
be 40 km/h—the same magnitude but without a direction.
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Average speed, however, is very different from average velocity.
Average speed is the distance traveled divided by elapsed
time.

We have noted that distance traveled can be greater than
displacement. So average speed can be greater than average
velocity, which is displacement divided by time. For example,
if you run to a store and return home in half an hour, and
the total distance traveled was 6 km, then your average speed
was 12 km/h. Your average velocity, however, was zero, because
your displacement for the round trip is zero. (Displacement is
change in position and, thus, is zero for a round trip.) Thus
average speed is not simply the magnitude of average velocity.

Figure 3. During a 30-minute round trip to the store, the total
distance traveled is 6 km. The average speed is 12 km/h. The
displacement for the round trip is zero, since there was no net
change in position. Thus the average velocity is zero. Note: this
figure uses the symbols x instead of px to denote position. Both
conventions can be used.

Graphing
Another way of visualizing the motion of an object is to use a

graph. A plot of position or of velocity as a function of time can
be very useful.

For example, for this trip to the store, the position, velocity,

176 | 3.3 Time, Velocity, and Speed



and speed-vs.-time graphs are displayed in Figure 4 below.
(Note that these graphs depict a very simplified model of the
trip. We are assuming that speed is constant during the trip,
which is unrealistic given that we’ll probably stop at the store.
But for simplicity’s sake, we will model it with no stops or
changes in speed. We are also assuming that the route
between the store and the house is a perfectly straight line.)
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Figure 4. Position vs. time, velocity vs. time, and speed
vs. time on a trip. Note that the velocity for the return
trip is negative.

MAKING CONNECTIONS:
TAKE-HOME INVESTIGATION —
GETTING A SENSE OF SPEED

If you have spent much time driving, you probably
have a good sense of speeds between about 10 and
70 km per hour. But what are these in meters per
second? What do we mean when we say that
something is moving at 10 m/s? To get a better
sense of what these values really mean, do some
observations and calculations on your own:

• calculate typical car speeds in meters per
second

• estimate jogging and walking speed by
timing yourself; convert the measurements
into both m/s and mi/h

Section Summary

• Time is measured in terms of change, and its SI unit is the

second (s). Elapsed time for an event is Δt = tf – ti
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where tf is the final time and ti is the
initial time. The initial time is often
taken to be zero, as if measured with
a stopwatch; the elapsed time is then
just t.

• Average velocity is defined as displacement divided by the
travel time. In symbols, average velocity is

v average = Δp/Δt = (pf – pi)/ (tf – ti)
• The SI unit for velocity is m/s.
• Velocity is a vector and thus has a direction.
• Instantaneous velocity v is the velocity at a specific instant

or the average velocity for an infinitesimal interval.
• Instantaneous speed is the magnitude of the

instantaneous velocity.
• Instantaneous speed is a scalar quantity, as it has no

direction specified.
• Average speed is the total distance traveled divided by the

elapsed time. (Average speed is not the magnitude of the
average velocity.) Speed is a scalar quantity; it has no
direction associated with it.

Glossary

average speed
distance traveled divided by time during which motion
occurs

average velocity
displacement divided by time over which displacement
occurs

instantaneous velocity
velocity at a specific instant, or the average velocity over
an infinitesimal time interval
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instantaneous speed
magnitude of the instantaneous velocity

time
change, or the interval over which change occurs

model
simplified description that contains only those elements
necessary to describe the physics of a physical situation

elapsed time
the difference between the ending time and beginning
time
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21. 3.4 Acceleration

In everyday conversation, to accelerate means to speed up.
Perhaps the most common demonstration of acceleration
happens when you press on the gas pedal in your car. The
accelerator in a car can in fact cause it to speed up. The greater
the acceleration, the greater the change in velocity over a
given time. The formal definition of acceleration is consistent
with these notions, but more inclusive.

AVERAGE ACCELERATION

Average acceleration is the rate at which velocity
changes,

where

is average acceleration,

is velocity, and t is time.

Because acceleration is velocity in m/s divided by time in s,
the standard units for acceleration are m/s2, meters per second
squared or meters per second per second, which literally
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means by how many meters per second the velocity changes
every second.

Recall that velocity is a vector—it has both magnitude and
direction. This means that a change in velocity can be a change
in magnitude (or speed), but it can also be a change in
direction. For example, if a cyclist turns a corner at constant
speed, it is accelerating because its direction is changing. The
quicker you turn, the greater the acceleration. So there is an
acceleration when velocity changes either in magnitude (an
increase or decrease in speed) or in direction, or both.

ACCELERATION AS A VECTOR

Acceleration is a vector in the same direction as
the change in velocity,

. Since velocity is a vector, it can change either in
magnitude or in direction. Acceleration is therefore
a change in either speed or direction, or both.

Keep in mind that although acceleration is in the direction
of the change in velocity, it is not always in the direction of
motion. When an object slows down, its acceleration is
opposite to the direction of its motion. This is known as
deceleration.
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MISCONCEPTION ALERT:
DECELERATION VS. NEGATIVE
ACCELERATION

Deceleration always refers to acceleration in the
direction opposite to the direction of the velocity.
Deceleration always reduces speed. Negative
acceleration, however, is acceleration in the
negative direction in the chosen coordinate system.
Negative acceleration may or may not be
deceleration, and deceleration may or may not be
considered negative acceleration. For example,
consider the car shown below here:
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Figure 3. (a) This car is speeding up as it moves toward the
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right. It therefore has positive acceleration in our
coordinate system. (b) This car is slowing down as it moves
toward the right. Therefore, it has negative acceleration in
our coordinate system, because its acceleration is toward
the left. The car is also decelerating: the direction of its
acceleration is opposite to its direction of motion. (c) This
car is moving toward the left, but slowing down over time.
Therefore, its acceleration is positive in our coordinate
system because it is toward the right. However, the car is
decelerating because its acceleration is opposite to its
motion. (d) This car is speeding up as it moves toward the
left. It has negative acceleration because it is accelerating
toward the left. However, because its acceleration is in the
same direction as its motion, it is speeding up (not
decelerating).

Example 1: Calculating
Acceleration: A Racehorse Leaves
the Gate

A racehorse coming out of the gate accelerates
from rest to a velocity of 15.0 m/s due west in 1.80 s.
What is its average acceleration?
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Figure 4. (credit: Jon Sullivan, PD Photo.org).

Strategy

First we draw a sketch and assign a coordinate
system to the problem. This is a simple problem, but
it always helps to visualize it. Notice that we assign
east as positive and west as negative. Thus, in this
case, we have negative velocity.

3.4 Acceleration | 187



Figure 5.

We can solve this problem by identifying

and Δt from the given information and then
calculating the average acceleration directly from
the equation:

Solution

1. Identify the knowns ,

, (the negative sign indicates

direction toward the west), Δt = 1.80 s.

2. Find the change in velocity. Since the horse is
going from zero to -15.0 m/s, its change in velocity
equals its final velocity:
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\Delta\overrightarrow{\mathbf{v}} =
\overrightarrow{\mathbf{v_f}} = -15.0 \textbf{m/s}
.

3. Plug in the known values ( and Δt) and

solve for the unknown .

Discussion

The negative sign for acceleration indicates that
acceleration is toward the west. An acceleration of
8.33 m/s2 due west means that the horse increases
its velocity by 8.33 m/s due west each second, that is,
8.33 meters per second per second, which we write
as 8.33 m/s2. This is truly an average acceleration,
because the ride is not smooth. We shall see later
that an acceleration of this magnitude would
require the rider to hang on with a force nearly
equal to his weight.

Instantaneous Acceleration

Instantaneous acceleration, , or the acceleration at a

specific instant in time, is obtained by the same process as
discussed for instantaneous velocity in the earlier section on
speed and velocity —that is, by considering an infinitesimally
small interval of time. How do we find instantaneous
acceleration using only algebra? The answer is that we choose
an average acceleration that is representative of the motion.
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Figure 6 below hows graphs of instantaneous acceleration
versus time for two very different motions. In Figure 6 a), the
acceleration varies slightly and the average over the entire
interval is nearly the same as the instantaneous acceleration
at any time. In this case, we should treat this motion as if it
had a constant acceleration equal to the average (in this case
about 1.8 m/s2). In Figure 6 b), the acceleration varies drastically
over time. In such situations it is best to consider smaller time
intervals and choose an average acceleration for each. For
example, we could consider motion over the time intervals
from 0 to 1.0 s and from 1.0 to 3.0 s as separate motions with
accelerations of +3.0 m/s2 and -2.0 m/s2, respectively.

Figure 6. Graphs of instantaneous acceleration versus time for two
different one-dimensional motions. (a) Here acceleration varies only
slightly and is always in the same direction, since it is positive. The
average over the interval is nearly the same as the acceleration at
any given time. (b) Here the acceleration varies greatly, perhaps
representing a package on a post office conveyor belt that is
accelerated forward and backward as it bumps along. It is necessary
to consider small time intervals (such as from 0 to 1.0 s) with constant
or nearly constant acceleration in such a situation.
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Sign and Direction

Perhaps the most important thing to note about these
examples is the signs of the answers. In our chosen coordinate
system, plus means the quantity is to the right and minus
means it is to the left. This is easy to imagine for displacement
and velocity. But it is a little less obvious for acceleration. Most
people interpret negative acceleration as the slowing of an
object. The crucial distinction if the acceleration is in the
opposite direction from the velocity. In fact, a negative
acceleration will increase a negative velocity. If acceleration has
the same sign as the velocity, the object is speeding up. If
acceleration has the opposite sign as the velocity, the object is
slowing down.

PHET EXPLORATIONS: MOVING
MAN SIMULATION

Learn about position, velocity, and acceleration
graphs. Move the little man back and forth with the
mouse and plot his motion. Set the position,
velocity, or acceleration and let the simulation move
the man for you.

https://phet.colorado.edu/en/simulation/moving-
man
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Figure 13. Moving Man.

Section Summary

• Acceleration is the rate at which velocity changes. In
symbols, average acceleration is

• The standard unit for acceleration is m/s2.
• Acceleration is a vector, and thus has a both a magnitude

and direction.
• Acceleration can be caused by either a change in the

magnitude or the direction of the velocity.

• Instantaneous acceleration, , is the acceleration at a

specific instant in time.
• Deceleration is an acceleration with a direction opposite to

that of the velocity.
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Glossary

acceleration
the rate of change in velocity; the change in velocity over
time

average acceleration
the change in velocity divided by the time over which it
changes

instantaneous acceleration
acceleration at a specific point in time

deceleration
acceleration in the direction opposite to velocity;
acceleration that results in a decrease in velocity
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22. 3.5 Graphical
Analysis of
One-Dimensional
Motion

A graph, like a picture, is worth a thousand words. Graphs not
only contain numerical information; they also reveal
relationships between physical quantities. This section uses
graphs of displacement, velocity, and acceleration versus time
to illustrate one-dimensional kinematics.

First note that graphs in this text have perpendicular axes,
one horizontal and the other vertical. When two physical
quantities are plotted against one another in such a graph,
the horizontal axis is usually considered to be an independent
variable and the vertical axis a dependent variable. If we call
the horizontal axis the x-axis and the vertical axis the y-axis, as
in Figure 1 a straight-line graph has the general form

y = mx + b

Here m is the slope, defined to be the rise divided by the run
(as seen in the figure) of the straight line. The letter b is used for
the y-intercept, which is the point at which the line crosses the
vertical axis.
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Figure 1. A straight-line graph. The equation for a
straight line is y = mx + b.

Graph of Displacement vs. Time (a =
0, so v is constant)

Time is usually an independent variable that other quantities,
such as displacement, depend upon. A graph of displacement
versus time would, thus, have px (displayed as x on graph
below) on the vertical axis and t on the horizontal axis. Figure 2
shown below is just such a straight-line graph. It shows a graph
of displacement versus time for a jet-powered car on a very flat
dry lake bed in Nevada.
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Figure 2. Graph of displacement versus time for a jet-powered car on
the Bonneville Salt Flats. Note: this figure uses the symbols x instead
of px to denote position. Both conventions can be used.

Using the relationship between
dependent and independent variables,
we see that the slope in the graph
above is average velocity or and the
intercept is displacement at time
zero—that is, px0. Substituting these
symbols into y = mx + b gives

px = (average velocity) + pxo

Thus a graph of displacement versus time gives a general
relationship among displacement, velocity, and time, as well
as giving detailed numerical information about a specific
situation.
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THE SLOPE OF X VS. T

The slope of the graph of displacement px vs. time
t is velocity v.

slope = rise / run = Δpx /Δt = vx average or vx bar (by
definition)

Notice that this equation is the same as that
derived algebraically from other motion equations
the earlier section.

From the figure we can see that the car has a displacement of
25 m at 0.50 s and 2000 m at 6.40 s. Its displacement at other
times can be read from the graph; furthermore, information
about its velocity and acceleration can also be obtained from
the graph.

Example 1: Determining Average
Velocity from a Graph of
Displacement versus Time: Jet Car

Find the average velocity of the car whose
position is graphed above in Figure 2.
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Strategy

The slope of a graph of px vs. t is average velocity,
since slope equals rise over run. In this case, rise =
change in displacement and run = change in time,
so that

slope = rise / run = Δpx /Δt = vx average

Since the slope is constant here, any two points on
the graph can be used to find the slope. (Generally
speaking, it is most accurate to use two widely
separated points on the straight line. This is because
any error in reading data from the graph is
proportionally smaller if the interval is larger.)

Solution

1. Choose two points on the line. In this case, we
choose the points labeled on the graph: (6.4 s, 2000
m) and (0.50 s, 525 m). (Note, however, that you
could choose any two points.)

2. Substitute the px and t values of the chosen
points into the equation. Remember in calculating
change (Δ) we always use final value minus initial
value.

slope = rise / run = Δpx /Δt = v x average = ( 2000 m/
s – 525 m/s) / ( 6.4 s – 0.50 s)

yielding the average velocityx = 250 m/s

Discussion

This is an impressively large land speed (900 km/h,
or about 560 mi/h): much greater than the typical
highway speed limit of 60 mi/h (27 m/s or 96 km/h),
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but considerably shy of the record of 343 m/s (1234
km/h or 766 mi/h) set in 1997.

Graphs of Motion when α is constant
but α≠0

The graphs in Figure 3 below represent the motion of the jet-
powered car as it accelerates toward its top speed, but only
during the time when its acceleration is constant. Time starts
at zero for this motion (as if measured with a stopwatch), and
the displacement and velocity are initially 200 m and 15 m/s,
respectively.
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Figure 3. Graphs of motion of a jet-powered car during
the time span when its acceleration is constant. (a) The
slope of anpx vs. t graph is velocity. This is shown at two
points, and the instantaneous velocities obtained are
plotted in the next graph. Instantaneous velocity at any
point is the slope of the tangent at that point. (b) The
slope of the vx vs. t graph is constant for this part of the
motion, indicating constant acceleration. (c)
Acceleration has the constant value of 5.0 m/s2 over
the time interval plotted.

The graph of displacement versus time in Figure 3 (a) shown
above is a curve rather than a straight line. The slope of the
curve becomes steeper as time progresses, showing that the
velocity is increasing over time. The slope at any point on a
displacement-versus-time graph is the instantaneous velocity
at that point. It is found by drawing a straight line tangent to
the curve at the point of interest and taking the slope of this
straight line. Tangent lines are shown above for two points in
Figure 3 (a). If this is done at every point on the curve and
the values are plotted against time, then the graph of velocity
versus time shown in Figure 3 (b) is obtained. Furthermore, the
slope of the graph of velocity versus time is acceleration, which
is shown in Figure 3(c).
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Example 2: Determining
Instantaneous Velocity from the
Slope at a Point: Jet Car

Calculate the velocity of the jet car at a time of 25 s
by finding the slope of the px vs. t graph in the
graph below.

Figure 5. The slope of an px vs.t graph is velocity. This is
shown at two points. Instantaneous velocity at any
point is the slope of the tangent at that point.

Strategy

The slope of a curve at a point is equal to the slope
of a straight line tangent to the curve at that point.
This principle is illustrated in the figure shown
above where Q is the point at t=25 s.
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Solution

1. Find the tangent line to the curve at t = 25 s.

2. Determine the endpoints of the tangent. These
correspond to a position of 1300 m at time 19 s and a
position of 3120 m at time 32 s.

3. Plug these endpoints into the equation to solve
for the slope, v.

vx Q = Δpx Q / Δt Q = (3120 m – 1300 m ) / (32 s –
19 s )

Thus vxQ = ( 1820 m ) / ( 13 s) = 140 m/s

Discussion

This is the value given in this figure’s table for vx at
t = 25 s. The value of 140 m/s for vx Q is plotted in
Figure 5(b) . The entire graph of vx vs. t can be
obtained in this fashion.

Carrying this one step further, we note that the slope of a
velocity versus time graph is acceleration. Slope is rise divided
by run; on a v vs. t graph, rise = change in velocity Δv and run =
change in time Δt.
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THE SLOPE OF V VS. T

The slope of a graph of velocity v vs. time t is
acceleration a.

slope = average acceleration = Δv / Δt

Since the velocity versus time graph in Figure 3 (b) is a straight
line, its slope is the same everywhere, implying that
acceleration is constant. Acceleration versus time is graphed in
Figure 3(c)

Additional general information can be obtained from Figure
6 and the expression for a straight line, y = mx + b.

In this case, the vertical axis y is V, the intercept b is v0, the
slope m is a, and the horizontal axis px is t. Substituting these
symbols yields

v = a t + vo or often written v = vo + a t

A general relationship for velocity, acceleration, and time has
again been obtained from a graph. Notice that this equation
was also derived algebraically from other motion equations in
earlier sections.

It is not accidental that the same equations are obtained
by graphical analysis as by algebraic techniques. In fact, an
important way to discover physical relationships is to measure
various physical quantities and then make graphs of one
quantity against another to see if they are correlated in any
way. Correlations imply physical relationships and might be
shown by smooth graphs such as those above. From such
graphs, mathematical relationships can sometimes be
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postulated. Further experiments are then performed to
determine the validity of the hypothesized relationships.

Graphs of Motion Where Acceleration
is Not Constant

Now consider the motion of the jet car as it goes from 165 m/s
to its top velocity of 250 m/s, graphed in Figure 6 below. Time
again starts at zero, and the initial displacement and velocity
are 2900 m and 165 m/s, respectively. (These were the final
displacement and velocity of the car in the motion graphed
in Figure 3. Acceleration gradually decreases from 5.0 m/s2 to
zero when the car hits 250 m/s. The slope of the x vs. t graph
increases until t = 55 s, after which time the slope is constant.
Similarly, velocity increases until 55 s and then becomes
constant, since acceleration decreases to zero at 55 s and
remains zero afterward.
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Figure 6. Graphs of motion of a jet-powered car as it reaches its
top velocity. This motion begins where the motion in Figure 3
ends. (a) The slope of this graph is velocity; it is plotted in the next
graph. (b) The velocity gradually approaches its top value. The
slope of this graph is acceleration; it is plotted in the final graph.
(c) Acceleration gradually declines to zero when velocity
becomes constant.

Example 3: Calculating
Acceleration from a Graph of
Velocity versus Time

Calculate the acceleration of the jet car at a time
of 25 s by finding the slope of the v vs. t graph in
Figure 6(b).

Strategy

The slope of the curve at t = 25 s is equal to the
slope of the line tangent at that point, as illustrated
in Figure 6(b)

Solution

Determine endpoints of the tangent line from the
figure, and then plug them into the equation to
solve for slope, a.

slope = Δv / Δ t = ( 260 m/s – 210 m/s) / ( 51 – 1.0 s)
= 1.0 m/s2

Discussion: Note that this value for a is
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consistent with the value plotted in Figure 6 (c) at t
= 25 s.

A graph of displacement versus time can be used to generate
a graph of velocity versus time, and a graph of velocity versus
time can be used to generate a graph of acceleration versus
time. We do this by finding the slope of the graphs at every
point. If the graph is linear (i.e., a line with a constant slope), it
is easy to find the slope at any point and you have the slope
for every point. Graphical analysis of motion can be used to
describe both specific and general characteristics of
kinematics. Graphs can also be used for other topics in physics.
An important aspect of exploring physical relationships is to
graph them and look for underlying relationships.

Section Summary

• Graphs of motion can be used to analyze motion.
• Graphical solutions yield identical solutions to

mathematical methods for deriving motion equations.
• The slope of a graph of displacement px vs. time t is

velocity vx.
• The slope of a graph of velocity vx vs. time t graph is

acceleration ax.
• Average velocity, instantaneous velocity, and acceleration

can all be obtained by analyzing graphs.
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Conceptual Questions

1: (a) Explain how you can use the graph of position
versus time in Figure 8 below o describe the change in
velocity over time. Identify (b) the time (ta, tb, tc, td, or
te) at which the instantaneous velocity is greatest, (c)
the time at which it is zero, and (d) the time at which it
is negative.

Figure 8.

2: (a) Sketch a graph of velocity versus time
corresponding to the graph of displacement versus
time given in Figure 9 below (b) Identify the time or
times (ta, tb, tc, etc.) at which the instantaneous velocity
is greatest. (c) At which times is it zero? (d) At which
times is it negative?
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Figure 9.

3: (a) Explain how you can determine the acceleration
over time from a velocity versus time graph such as the
one in Figure 10 below. (b) Based on the graph, how
does acceleration change over time?
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Figure 10.

4: (a) Sketch a graph of acceleration versus time
corresponding to the graph of velocity versus time
given in Figure 11 below. (b) Identify the time or times (
ta, tb, tc, etc.) at which the acceleration is greatest. (c) At
which times is it zero? (d) At which times is it negative?
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Figure 11.

5: Consider the velocity vs. time graph of a person in
an elevator shown in Figure 12. Suppose the elevator is
initially at rest. It then accelerates for 3 seconds,
maintains that velocity for 15 seconds, then decelerates
for 5 seconds until it stops. The acceleration for the
entire trip is not constant so we cannot use the
equations of motion you have used earlier in this
chapter for the complete trip. (We could, however, use
them in the three individual sections where
acceleration is a constant.) Sketch graphs of (a) position
vs. time and (b) acceleration vs. time for this trip.
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Figure 12.

6: A cylinder is given a push and then rolls up an
inclined plane. If the origin is the starting point, sketch
the position, velocity, and acceleration of the cylinder
vs. time as it goes up and then down the plane.

Problems & Exercises

Note: There is always uncertainty in numbers taken
from graphs. If your answers differ from expected
values, examine them to see if they are within data
extraction uncertainties estimated by you.

1: (a) By taking the slope of the curve in Figure 13
below, verify that the velocity of the jet car is 115 m/s at
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t = 20 s. (b) By taking the slope of the curve at any point
in Figure 14. verify that the jet car’s acceleration is 5.0
m/s2.

Figure 13.

Figure 14.
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2: Using approximate values, calculate the slope of
the curve in Figure 15 below to verify that the velocity at
t = 10.0 s is 0.208 m/s. Assume all values are known to 3
significant figures.

Figure 15.

3: Using approximate values, calculate the slope of
the curve in Figure 15 above to verify that the velocity at
t = 30.0 s is 0.238 m/s. Assume all values are known to 3
significant figures.

4: By taking the slope of the curve in Figure 16 below,
verify that the acceleration is 3.2 m/s2 at t = 10 s.
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Figure 16.

5: Construct the displacement graph for the subway
shuttle train as shown in the previous section, Chapter
2.7 Figure 7(a). Your graph should show the position of
the train, in kilometres, from t = 0 to 20 s. You will need
to use the information on acceleration and velocity
given in the examples for this figure.

6: (a) Take the slope of the curve in Figure 17 below to
find the jogger’s velocity at t = 2.5 s. (b) Repeat at 7.5 s.
These values must be consistent with the graph in
Figure 18, also below.
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Figure 17.

Figure 18.
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Figure 19.

7: A graph of v(t) is shown for a world-class track
sprinter in a 100-m race is shown below in Figure 20.
What is the runner’s (a) average velocity for the first 4
s? (b) instantaneous velocity at t = 5 s? (c) average
acceleration between 0 and 4 s? d) acceleration at t = 5
s? (e) time for the race?
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Figure 20.

8: Figure 21 below shows the displacement graph for
a particle for 5 s. Draw the corresponding velocity and
acceleration graphs.
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Figure 21.

Glossary

independent variable
the variable that the dependent variable is measured with
respect to; usually plotted along the x-axis

dependent variable
the variable that is being measured; usually plotted along
the y-axis

slope
the difference in y-value (the rise) divided by the
difference in x-value (the run) of two points on a straight
line

y-intercept
the y-value when x = 0, or when the graph crosses the
y-axis
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Solutions

Concept Questions

1: (b) ta 1(c) td 1(d) te

2: (b) ta and or td 1(c) tc te t g 1d) ta tb tf

4: (c) td te th

Problems & Exercises

1: (a) 115 m/s (b) 5.0 m/s2

3: v = (11.7 – 6.95) x 10 3 m / ( 40.0 x – 20.0 s) = 238 m/s

5:

Figure 23.

6: The graphs are hard to read. About a) v 2.5 = (18
m / 5 s) = + 3.6 m/s b) v 7.5 = (2 – 18 m) / (10 – 5 s) = – 2.8
m/s Those values are consistent with the graphs.
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7: (a) 6 m/s (b) 12 m/s c) 3 m/s 2 d) 0 m/s2 e) 10 s

8: From t = 0 to t = 2 seconds, average velocity = 1 m/
s and the acceleration is zero.

From t = 2 to t = 3 seconds the average velocity is -5
m/ s and the acceleration is zero.

From t = 3 to t = 5.0 seconds the average velocity = 0
m/s and the acceleration = 0 m/s.

From t = 5 to t = 6 seconds, the average velocity is + 1
m/s. It is constant in that time and the acceleration is
zero.

The acceleration is zero for all the straight line
segments. There was an infinitely large acceleration in
the very short time it took the velocities to change.
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23. 3.6 Applications to
Human Movement
Analysis

Measuring kinematic variables in one-dimension can be useful
for both athletic assessment of performance and rehabilitation.
Let’s consider two examples:

1. Sydney is a College sprinter with her eye on a National
title. She can maintain a top velocity of 10.89 m/s for most
of the 100m sprint. This is comparable, in fact better, to the
current National champion at 10.85 m/s. Can you help
Sydney beat her opponent and become champion?

As a biomechanist, you may be ask to analyze Sydney’s
performance and offer advice for improvements. You watch her
run 5 race-efforts and notice a trend. Sydney reaches her top
speed of 10.89 m/s at the 30-m mark. She manages to maintain
that top speed until the end of the 100-m. Her opponent can
only reach 10.85 m/s but she reaches her top speed at the 18-m
mark. What advice do you have for Sydney and her strength
and conditioning coach?

2. Alfred is recovering from a stroke. A stroke is a blockage
of blood to parts of the brain, causing the brain tissues to be
affected from the lack of oxygen. The right -half of Alfred’s body
was affected, causing weakness to his right leg. This greatly
affected his walking pattern (also called gait pattern). He has
recovered enough function for activities of daily living which
is encouraging to regain independence. The only obstacle
standing in the way between himself and the grocery store is
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the ability to cross the street quickly enough to make the green
light. How can you help Alfred increase his walking speed?

As a biomechanist, your first job is to assess Alfred’s walking
speed. You set up a straight 10-m walkway and time how long
it takes him to complete the course. Using your knowledge of
kinematics, you divide the displacement (10-m) by the time he
took (12.3 seconds). You can then compare this value (0.81 m/s)
to the required velocity to safely crossed the street (1 m/s).

You have a few options to increase walking velocity. The
variables that determine walking velocity include step length
and step frequency. Which do you recommend Alfred work
on? What strategies would you recommend?
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PART IV

CHAPTER 4: LINEAR
KINEMATICS IN
TWO-DIMENSIONS

Chapter Objectives

After this chapter, you will be able to:

• Be able to locate coordinates on a cartesian
coordinate system and properly report them

• Add and subtract vector variables acting in two-
dimensions

• Manipulate equations of uniformly accelerated
motion

• Predict the trajectory of a projectile launched in
two dimensions

Chapter 4: Linear Kinematics in
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24. 4.0 Introduction -
Trigonometry

If a vector is acting in two-dimensions, it can be broken down
into a horizontal component and a vertical component. You’ll
soon realize that a resultant vector broken down into its
components (x and y) resembles a right-angle triangle. To be
successful in adding and subtracting vectors, you should be
comfortable calculating the components of a right-angle
triangle. A right-angle triangle, is a triangle that has one 90
degree angle.

We can use the following two concepts to solve the length of
the triangle’s side and the angle at the corners:
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1. Pythagorean theorem: The length of the hypothenuse
(the longest side of the triangle) squared, it equal to the
the sum of both sides squared. Using the figure above, we
have the equation:

h 2 = a2 + b2

2. Trigonometric ratios: We will use three of the
trigonometric ratios: sin, cos and tan. These are ratios because
they are expressed in terms of the length of the sides of a right-
angled triangle for a specific angle. Let’s take for example, the
angle ‘alpha’ in the figure above. The hypothenuse is ‘h’, the
side opposite to the angle is ‘a’ and the side adjacent to the
angle is ‘b’.

The sin of alpha is equal to the length of the opposite side
divided by the length of the hypothenuse:

sin α = a/h
The cos of alpha is equal to the length of the adjacent side

divided by the length of the hypothenuse:
cos α = b/h

The tan of alpha is equal to the length of the opposite side
divided by the length of the adjacent:

tan α = a/b

A common mnemonic for remembering these relationships is
SohCahToa, formed from the first letters of “Sine is opposite
over hypotenuse, Cosine is adjacent over hypotenuse, Tangent
is opposite over adjacent.”
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25. 4.1 Vectors in Two
Dimensions

Summary

• Observe that motion in two dimensions
consists of horizontal and vertical components.

• Understand the independence of horizontal
and vertical vectors in two-dimensional motion.

Figure 1. Walkers and drivers in a city like New York are
rarely able to travel in straight lines to reach their
destinations. Instead, they must follow roads and
sidewalks, making two-dimensional, zigzagged paths.
(credit: Margaret W. Carruthers).
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Two-Dimensional Motion: Running in
a City

Suppose you want to run from one point to another in a city
with uniform square blocks, as pictured in Figure 2.

Figure 2. A road runner runs a two-dimensional path between two
points in a city. In this scene, all blocks are square and are the same
size.

The straight-line path that a helicopter might fly is blocked
to you as a pedestrian, and so you are forced to take a two-
dimensional path, such as the one shown. You run 14 blocks in
all, 9 east followed by 5 north. What is the straight-line distance
(displacement)?

An old adage states that the shortest distance between two
points is a straight line. The two legs of the trip and the straight-
line path form a right triangle, and so the Pythagorean
theorem, a2+b2=c2, can be used to find the straight-line
distance.
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Figure 3. The Pythagorean theorem
relates the length of the legs of a
right triangle, labeled a and b, with
the hypotenuse, labeled c. The
relationship is given by: a2+b2=c2.
This can be rewritten, solving for c: c
= √(a2+b2).

The hypotenuse of the triangle is the straight-line path, and
so in this case its length in units of city blocks is

considerably shorter than the 14 blocks you walked.

Figure 4. The straight-line path followed by a helicopter between
the two points is shorter than the 14 blocks ran by the
pedestrian. All blocks are square and the same size.

The fact that the straight-line distance (10.3 blocks) in Figure 4
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is less than the total distance walked (14 blocks) is one example
of a general characteristic of vectors. (Recall that vectors are
quantities that have both magnitude and direction.)

As for one-dimensional kinematics, we use arrows to
represent vectors. The length of the arrow is proportional to
the vector’s magnitude. The arrow’s length is indicated by hash
marks in Figure 2 and Figure 4. The arrow points in the same
direction as the vector. For two-dimensional motion, the path
of an object can be represented with three vectors: one vector
shows the straight-line path between the initial and final
points of the motion (the resultant), one vector shows the
horizontal component of the motion, and one vector shows the
vertical component of the motion. The horizontal and vertical
components of the motion add together to give the straight-
line path. For example, observe the three vectors in Figure 4.
The first represents a 9-block displacement east. The second
represents a 5-block displacement north. These vectors are
added to give the third vector, with a 10.3-block total
displacement. The third vector is the straight-line path
between the two points. Note that in this example, the vectors
that we are adding are perpendicular to each other and thus
form a right triangle. This means that we can use the
Pythagorean theorem to calculate the magnitude of the total
displacement. (Note that we cannot use the Pythagorean
theorem to add vectors that are not perpendicular. We will
develop techniques for adding vectors having any direction,
not just those perpendicular to one another later in the book.

The Independence of Perpendicular
Motions

The person taking the path shown in Figure 4 runs east and
then north (two perpendicular directions). How far he or she
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runs east is only affected by his or her motion eastward.
Similarly, how far he or she runs north is only affected by his or
her motion northward.

INDEPENDENCE OF MOTION

The horizontal and vertical components of two-
dimensional motion are independent of each other.
Any motion in the horizontal direction does not
affect motion in the vertical direction, and vice
versa.

This is true in a simple scenario like that of walking in one
direction first, followed by another. It is also true of more
complicated motion involving movement in two directions at
once. For example, let’s compare the motions of two baseballs.
One baseball is dropped from rest. At the same instant,
another is thrown horizontally from the same height and
follows a curved path. A stroboscope has captured the
positions of the balls at fixed time intervals as they fall.
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Figure 5. This shows the motions of two identical
balls—one falls from rest, the other has an initial
horizontal velocity. Each subsequent position is
an equal time interval. Arrows represent
horizontal and vertical velocities at each position.
The ball on the right has an initial horizontal
velocity, while the ball on the left has no
horizontal velocity. Despite the difference in
horizontal velocities, the vertical velocities and
positions are identical for both balls. This shows
that the vertical and horizontal motions are
independent.

It is remarkable that for each flash of the strobe, the vertical
positions of the two balls are the same. This similarity implies
that the vertical motion is independent of whether or not the
ball is moving horizontally. (Assuming no air resistance, the
vertical motion of a falling object is influenced by gravity only,
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and not by any horizontal forces.) Careful examination of the
ball thrown horizontally shows that it travels the same
horizontal distance between flashes. This is due to the fact
that there are no additional forces on the ball in the horizontal
direction after it is thrown. This result means that the horizontal
velocity is constant, and affected neither by vertical motion nor
by gravity (which is vertical). Note that this case is true only for
ideal conditions. In the real world, air resistance will affect the
speed of the balls in both directions.

The two-dimensional curved path of the horizontally thrown
ball is composed of two independent one-dimensional
motions (horizontal and vertical). The key to analyzing such
motion, called projectile motion, is to resolve (break) it into
motions along perpendicular directions. Resolving two-
dimensional motion into perpendicular components is
possible because the components are independent.

Summary

• The shortest path between any two points is a straight
line. In two dimensions, this path can be represented by a
vector with horizontal and vertical components.

• The horizontal and vertical components of a vector are
independent of one another. Motion in the horizontal
direction does not affect motion in the vertical direction,
and vice versa.

Glossary

vector
a quantity that has both magnitude and direction; an
arrow used to represent quantities with both magnitude
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and direction
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26. 4.2 Vector Addition
and Subtraction

Summary

• Define and apply the rules of vector addition
and subtraction.

Vectors in One Dimension

A vector is a quantity that has magnitude and direction.
Displacement, velocity, acceleration, and force, for example, are
all vectors. In one-dimensional, or straight-line, motion, the
direction of a vector can be given simply by a plus or minus
sign. In the horizontal axis, + corresponds to movement to the
right and – corresponds to movement to the left. In the vertical
axis, + corresponds to upward movement and – corresponds to
downward movement.

If all of the vectors are acting along the horizontal axis (x),
vectors can be added or subtracted together like regular
numbers. If all of the vectors are acting along the vertical axis
(y), vectors can be added or subtracted together like regular
numbers. For example, if a person runs 8 m to the right stops
and then runs 10 m to the right, their final displacement is
(+8m +10m) 18m. If the same person then walked 13 m to the
left, the final displacement would be: +18m – 13 m = +5m.

4.2 Vector Addition and
Subtraction | 237



If one of the vectors is acting along the horizontal axis (x) and
one is acting along the vertical axis (y), you will have to use a
different strategy, suitable for adding or subtracting vectors in
two dimensions (x and y).

Vectors in Two Dimensions (One
vector acting in y, one in x)

In two dimensions (2-d), we specify the direction of a vector
relative to some reference frame (i.e., coordinate system), using
an arrow having length proportional to the vector’s magnitude
and pointing in the direction of the vector.

Figure 1 shows such a graphical representation of a vector,
using as an example the total displacement for the person
running in a city considered in the previous section. The person
ran 9 blocks east and 5 blocks north and we want to know his
final displacement. We shall use the notation that a symbol
with an arrow over it, such as , stands for a vector. Its

magnitude is represented by the symbol in italics, D, and its
direction by θ.

VECTORS IN THIS TEXT

In this text, we will represent a vector with an
arrow over a symbol. For example, we will represent
the quantity force with the vector , which has both

magnitude and direction. The magnitude of the
vector will be represented by a variable in italics,
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such as F, and the direction of the variable will be
given by an angle θ.

Figure 1. A person runs 9 blocks east and 5 blocks north. The
displacement is 10.3 blocks at an angle 29.1o north of east.

Vector Addition: Tip-to-Tail Method

The tip-to-tail method is a graphical way to add two vectors,
when one is vertical and the other horizontal. It is described in
Figure 2 below and in the steps following. The tail of the vector
is the starting point of the vector, and the tip of a vector is the
final, pointed end of the arrow.
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Figure 2. Tip-to-Tail Method: (a) Draw a vector representing the
displacement to the east. (b) At the tip of the first vector, draw a
vector representing the displacement to the north. The tail of this
vector should originate from the head of the first. (c) Draw a line from
the tail of the east-pointing vector to the head of the north-pointing
vector to form the sum or resultant vector D. The length of the arrow
D is calculated using Pythagorean’s theorem and measures 10.3 units
. Its direction, described as the angle with respect to the east (or
horizontal axis) θ is calculated withe SOH CAH TOA to be 29.10.

Step 1. Draw an arrow to represent the first vector (9 blocks to
the east) using a ruler.
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Figure 3.

Step 2. Now draw an arrow to represent the second vector (5
blocks to the north). Place the tail of the second vector at the
tip of the first vector.
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Figure 4.

Step 3. If there are more than two vectors, start by adding all
the horizontal vectors together to have one resultant x vector
and add all the vertical vectors together to have one resultant
y vector. Use the two resultants in the tip-to-tail method.

Step 4. Draw an arrow from the tail of the first vector to the
head of the last vector. This is the resultant, or the sum, of the
other vectors.
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Figure 5.

Step 5. To get the magnitude of the resultant, we will use
the Pythagorean theorem to determine the length of the
hypotenuse of this newly formed right angle triangle. (D =
√x2+y2)

Step 6. To get the direction of the resultant, we will use
trigonometric relationships.

tan θ = opposite/adjacent
tan θ = y/x

Finding the vectors
components
In the examples above, we have been adding vectors to
determine the resultant vector. In many cases, however, we
will need to do the opposite. We will need to take a single
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vector and find what other vectors added together produce
it. In most cases, this involves determining the perpendicular
components of a single vector, for example the x– and
y-components, or the north-south and east-west components.

For example, we may know that the total displacement of
a person walking in a city is 10.3 blocks in a direction 29.0°
north of east and want to find out how many blocks east and
north had to be walked. This method is called finding the
components (or parts) of the displacement in the east and
north directions, and it is the inverse of the process followed
to find the total displacement. It is one example of finding
the components of a vector. You can draw the components
(x and y) of the vector and the resultant (hypothenuse) as a
right-angle triangle and use your knowledge of trigonometry
to solve for the length of the components (x and y).

Vector in Two-Dimensions (Adding
vectors acting at angles)

More realistically, you will have to add vectors that are not
acting perfectly along the horizontal axis or the vertical axis.
If you have to add vectors that are acting at angles and that
are composed of a horizontal component and a vertical
component. The preferred strategy in this case, would be to
break the vectors down into their horizontal and vertical
components. You can then add all of the horizontal
components together and all the vertical components
together to end up with two vectors acting perfectly along
each axis. Use the tip-to-tail method to reconstruct your final
results vector. Remember that your final answer should have a
magnitude and direction (an angle in this case).
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Summary

• The method of adding vectors and involves drawing

vectors on a graph and adding them using the tip-to-tail
method. The resultant vector is defined such that

. The magnitude and direction of are

then determined with the Pythagorean theorem and
trigonometric ratios (SOH CAH TOA), respectively.

• The tip-to-tail method of adding vectors involves drawing
the first vector on a graph and then placing the tail of
each subsequent vector at the head of the previous vector.
The resultant vector is then drawn from the tail of the first
vector to the head of the final vector.

Conceptual Questions

1: Which of the following is a vector: a person’s height,
the altitude on Mt. Everest, the age of the Earth, the
boiling point of water, the cost of this book, the Earth’s
population, the acceleration of gravity?

2: Give a specific example of a vector, stating its
magnitude, units, and direction.

3: What do vectors and scalars have in common?
How do they differ?

4: Two campers in a national park hike from their
cabin to the same spot on a lake, each taking a
different path, as illustrated below. The total distance
traveled along Path 1 is 7.5 km, and that along Path 2 is
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8.2 km. What is the final displacement of each
camper?

Figure 6.

5: Suppose you take two steps A and B (that is, two
nonzero displacements). Under what circumstances
can you end up at your starting point? More generally,
under what circumstances can two nonzero vectors
add to give zero? Is the maximum distance you can
end up from the starting point A+B the sum of the
lengths of the two steps?

6: Explain why it is not possible to add a scalar to a
vector.

7: If you take two steps of different sizes, can you end
up at your starting point? More generally, can two
vectors with different magnitudes ever add to zero?
Can three or more?
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Problems & Exercises

Solve these problems.

1: Suppose you walk 18.0 m straight west and then
25.0 m straight north. How far are you from your
starting point, and what is the compass direction of a
line connecting your starting point to your final
position? (If you represent the two legs of the walk as
vector displacements $\vec{\text{A }}$ and
$\vec{\text{B}}$, as in Figure 7, then this problem asks
you to find their sum
$\vec{\text{R}}=\vec{\text{A}}+\vec{\text{B}}$.)

Figure 7. The two displacements A and B add to
give a total displacement R having magnitude R
and direction θ.

2: Suppose you first walk 12.0 m in a direction 20°
west of north and then 20.0 m in a direction 40.0°
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south of west. How far are you from your starting point,
and what is the compass direction of a line connecting
your starting point to your final position?

Glossary

component (of a 2-d vector)
a piece of a vector that points in either the vertical or the
horizontal direction; every 2-d vector can be expressed as a
sum of two vertical and horizontal vector components

commutative
refers to the interchangeability of order in a function;
vector addition is commutative because the order in
which vectors are added together does not affect the final
sum

direction (of a vector)
the orientation of a vector in space

tip (of a vector)
the end point of a vector; the location of the tip of the
vector’s arrowhead; also referred to as the “tip”

tip-to-tail method
a method of adding vectors in which the tail of each vector
is placed at the head of the previous vector

magnitude (of a vector)
the length or size of a vector; magnitude is a scalar
quantity

resultant
the sum of two or more vectors

resultant vector
the vector sum of two or more vectors
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scalar
a quantity with magnitude but no direction

tail
the start point of a vector; opposite to the head or tip of
the arrow

Solutions

Problems & Exercises

2: south of west
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27. 4.3 Processing Data
in Biomechanics

In the previous section, we defined distance (length of the
path travelled) and displacement (change in position – shortest
distance from pf to pi). Displacement is the variable most often
used in biomechanics. The reason is that the tools used to
quantify kinematic variables typically take frames of
information. Think of a camera used to assess a squat
technique. A researcher would place a camera to film the squat
in the sagittal view. Recording the movement with a camera
produces a series of still pictures. If the camera records at a
frequency rate of 30 Hz, it produces 30 pictures per second.
Let’s say we are interested in the movement of the barbell.
We could place a marker on the end of the bar and record
its position relative to a coordinate system in each frame of
data (each still picture). To quantify change in position, you
can report on the movement between frame 1 and frame 2
but you cannot report what happened between the frames
because technically, you don’t know what happened between
them. You cannot calculate the length of the path travelled
(distance) because of this unknown but you can calculate the
displacement (p2-p1) since you know the position in frame 2
and 1.

Since we don’t know what happened between the frames
of data, we can only represent the change between the two
frames to represent the change in position (displacement),
velocity and acceleration. These are the variables most often
used in biomechanics.
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28. 4.4 Projectile
Motion

Summary

• Identify and explain the properties of a
projectile, such as acceleration due to gravity,
range, maximum height, and trajectory.

• Determine the location and velocity of a
projectile at different points in its trajectory.

• Apply the principle of independence of motion
to solve projectile motion problems.

Projectile motion is the motion of an object thrown or
projected into the air, subject to only the acceleration of gravity.
Since the object or body is under the effects of a constant
acceleration (-9.8m/s2 in the vertical and 0 in the horizontal
plane) its trajectory is predictable based on the magnitude and
direction of its initial velocity at take-off. The object or body
is called a projectile, and its path is called its trajectory. The
motion of falling objects is a simple one-dimensional type of
projectile motion in which there is no horizontal movement.
In this section, we consider two-dimensional projectile motion,
such as that of a football or other object for which air
resistance is negligible.
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PHET EXPLORATIONS: PROJECTILE
MOTION

Blast a Buick out of a cannon! Learn about
projectile motion by firing various objects. Set the
angle, initial speed, and mass. Add air resistance.
Make a game out of this simulation by trying to hit a
target.

Figure 7. Projectile Motion

An interactive or media element has been

excluded from this version of the text. You can

view it online here:

https://pressbooks.bccampus.ca/

humanbiomechanics/?p=293

The trajectory of a projectile takes on a parabolic shape. The
very top of the trajectory is called the apex. If a projectile takes
off and lands at the same height, the trajectory is symmetrical.
This means that the projectile travels the same distance in both
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the vertical and horizontal plane on the way up, as on the way
down. The time for the projectile to reach the apex, is the same
as the time for the projectile to come back to the initial height.

The most important fact to remember here is that motions
along perpendicular axes are independent and thus can be
analyzed separately. Vertical and horizontal motions are
independent. The key to analyzing two-dimensional projectile
motion is to break it into two motions, one along the horizontal
axis and the other along the vertical. (This choice of axes is
the most sensible, because acceleration due to gravity is
vertical—thus, there will be no acceleration along the
horizontal axis when air resistance is negligible.) As is
customary, we call the horizontal axis the x-axis and the vertical
axis the y-axis. Figure 1 illustrates the notation for
displacement, where is defined to be the total displacement

and x and y are its components along the horizontal and
vertical axes, respectively. The magnitudes of these vectors
are x, and y. (Note that in the last section we used the notation

to represent a vector with components Ax and Ay. If we

continued this format, we would call displacement with

components dx and dy.
Of course, to describe motion we must deal with velocity and

acceleration, as well as with displacement. We must find their
components along the x– and y-axes, too. We will assume all
forces except gravity (such as air resistance and friction, for
example) are negligible. The components of acceleration are
then very simple: ay=-g=-9.81 m/s2. Because gravity is vertical,
ax=0. Both accelerations are constant, so the following
kinematic equations of uniformly accelerated motion can be
used.
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EQUATIONS OF UNIFORMLY
ACCELERATED MOTION
(You can use these when

acceleration is a constant value)

Figure 1. The total displacement d of a soccer ball at a point
along its path. The vector d has components x and y along the
horizontal and vertical axes. The initial velocity it marked as s
here but typically v, and it makes an angle θ with the horizontal.

Given these assumptions, the following steps are then used to
analyze projectile motion:

254 | 4.4 Projectile Motion



Step 1. Resolve or break the initial velocity of the projectile
into horizontal and vertical components along the x- and y-
axes. The magnitude of the components of initial velocity
$\vec{\textbf{v}}$ along these axes are x and y. The magnitudes
of the components of the velocity in this case $\vec{\textbf{v}}$
are vx = v cos θ and vy = v sin θ, where v is the magnitude of the
velocity and θ is its direction, as shown in Figure 2. Initial values
are denoted with a subscript 0 instead of “i”.

Step 2. Treat the motion as two independent one-
dimensional motions, one horizontal and the other vertical.
The kinematic equations that you should use in the vertical
direction include:

This is a preference that makes most problems much easier. In
theory you can use each equation in either dimensions but
you’ll just have to trust me on this. Both those equations will
allow you to calculate the height of the projectile:

and the time it takes for the

projectile to reach the apex: .

The kinematic equation that you should use in the horizontal
direction is:

Since the acceleration in the x-axis is 0, the equation can be
re-written:

This equation will most often allow you to calculate the
horizontal range of the projectile.

Step 3. Solve for the unknowns in the two separate
motions—one horizontal and one vertical. Note that the only
common variable between the motions is time t. But consider
this: you are likely interested in how far (dx) and how high(dy)
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the projectile travelled. If you want to know how far a projectile
travelled you are interested in the entire trajectory. If you are
interested in how high the projectile traveled, you are
interested in the position of the projectile at its highest point
which is halfway through a symmetrical trajectory. Which
means you want to calculate dy at the halfway mark (half the
total time).

Step 4. Answer the question asked in the problem.
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Figure 2. (a) We analyze two-dimensional projectile motion by
breaking it into two independent one-dimensional motions along the
vertical and horizontal axes. (b) The horizontal motion is simple,
because ax=0 andvx is thus constant. (c) The velocity in the vertical
direction begins to decrease as the object rises; at its highest point,
the vertical velocity is zero. As the object falls towards the Earth
again, the vertical velocity increases again in magnitude but points in
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the opposite direction to the initial vertical velocity. (d) The x – and y
-motions are recombined to give the total velocity at any given point
on the trajectory.

DEFINING A COORDINATE SYSTEM

It is important to set up a coordinate system when
analyzing projectile motion. One part of defining
the coordinate system is to define an origin for the x
and y positions. Often, it is convenient to choose the
initial position of the object as the origin such that
xi = 0 and yi = 0. It is also important to define the
positive and negative directions in the x and y
directions. Typically, we define the positive vertical
direction as upwards, and the positive horizontal
direction is usually the direction of the object’s
motion. When this is the case, the vertical
acceleration, ay, takes a negative value (since it is
directed downwards towards the Earth). However, it
is occasionally useful to define the coordinates
differently. For example, if you are analyzing the
motion of a ball thrown downwards from the top of
a cliff, it may make sense to define the positive
direction downwards since the motion of the ball is
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solely in the downwards direction. If this is the case,
ay takes a positive value.

One of the most important things illustrated by projectile
motion is that vertical and horizontal motions are independent
of each other. On level ground, we define range to be the
horizontal distance (R) traveled by a projectile. Let us consider
projectile range further.
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Figure 5. Trajectories of projectiles on level ground. (a) The greater
the initial speedvi, the greater the range for a given initial angle. (b)
The effect of initial angle θi on the range of a projectile with a given
initial speed. Note that the range is the same for 15o and 75o,
although the maximum heights of those paths are different.

How does the initial velocity of a projectile affect its range?
Obviously, the greater the initial speed vi, the greater the range,
as shown in Figure 5(a). The initial angle θi also has a dramatic
effect on the range, as illustrated in Figure 5(b). For a fixed
initial speed, such as might be produced by a cannon, the
maximum range is obtained with θi= 45°. This is true only for
conditions neglecting air resistance. If air resistance is
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considered, the maximum angle is approximately 38°.
Interestingly, for every initial angle except 45° there are two
angles that give the same range—the sum of those angles is
90°.

Summary

• Projectile motion is the motion of an object through the
air that is subject only to the acceleration of gravity.

• To solve projectile motion problems, perform the following
steps:

1. Determine a coordinate system. Then, resolve the
initial velocity of the object in the horizontal and
vertical components.

2. Note that velocity final (vfy = 0 at the apex for y and vfx

= vix at the end for x) are known. The accelerations in x
and y are also known as they are constants (ax = 0, ay =
-9.81 m/s2)

3. Calculate the maximum height of the projectile (dy)
and the time it took for the projectile to reach the
apex (t 1/2) using the following equations:

4. Double the time found with the equations for y, to account
for the entire trajectory (t = 2*t 1/2).

5. Calculate the maximum range (dx) of the projectile using
the following equation:
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Conceptual Questions

1: Answer the following questions for projectile
motion on level ground assuming negligible air
resistance (the initial angle being neither 0° nor 90°):
(a) Is the velocity ever zero? (b) When is the velocity a
minimum? A maximum? (c) Can the velocity ever be
the same as the initial velocity at a time other than at t
= 0? (d) Can the speed ever be the same as the initial
speed at a time other than at t = 0?

2: Answer the following questions for projectile
motion on level ground assuming negligible air
resistance (the initial angle being neither 0° nor 90°):
(a) Is the acceleration ever zero? (b) Is the acceleration
ever in the same direction as a component of velocity?
(c) Is the acceleration ever opposite in direction to a
component of velocity?

3: For a fixed initial speed, the range of a projectile is
determined by the angle at which it is fired. For all but
the maximum, there are two angles that give the same
range. Considering factors that might affect the ability
of an archer to hit a target, such as wind, explain why
the smaller angle (closer to the horizontal) is preferable.
When would it be necessary for the archer to use the
larger angle? Why does the punter in a football game
use the higher trajectory?

4: During a lecture demonstration, a professor places
two coins on the edge of a table. She then flicks one of
the coins horizontally off the table, simultaneously
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nudging the other over the edge. Describe the
subsequent motion of the two coins, in particular
discussing whether they hit the floor at the same time.

Problems & Exercises

1: A projectile is launched at ground level with an
initial speed of 50.0 m/s at an angle of 30.0° above the
horizontal. It strikes a target above the ground 3.00
seconds later. What are the x and y distances from
where the projectile was launched to where it lands?

2: A ball is kicked with an initial velocity of 16 m/s in
the horizontal direction and 12 m/s in the vertical
direction on level ground. (a) At what speed does the
ball hit the ground? (b) For how long does the ball
remain in the air? (c)What maximum height is attained
by the ball?

3: A ball is thrown horizontally from the top of a
60.0-m building and lands 100.0 m from the base of the
building. Ignore air resistance. (a) How long is the ball
in the air? (b) What must have been the initial
horizontal component of the velocity? (c) What is the
vertical component of the velocity just before the ball
hits the ground? (d) What is the velocity (including
both the horizontal and vertical components) of the
ball just before it hits the ground?
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4: (a) A daredevil is attempting to jump his
motorcycle over a line of buses parked end to end by
driving up 32° ramp at a speed of 40.0 m/s (144 km/h).
How many buses can he clear if the top of the takeoff
ramp is at the same height as the bus tops and the
buses are 20.0 m long? (b) Discuss what your answer
implies about the margin of error in this act—that is,
consider how much greater the range is than the
horizontal distance he must travel to miss the end of
the last bus. (Neglect air resistance.)

5: An archer shoots an arrow at a 75.0 m distant
target; the bull’s-eye of the target is at same height as
the release height of the arrow. (a) At what angle must
the arrow be released to hit the bull’s-eye if its initial
speed is 35.0 m/s? In this part of the problem, explicitly
show how you follow the steps involved in solving
projectile motion problems. (b) There is a large tree
halfway between the archer and the target with an
overhanging horizontal branch 3.50 m above the
release height of the arrow. Will the arrow go over or
under the branch?

6: A rugby player passes the ball 7.00 m across the
field, where it is caught at the same height as it left his
hand. (a) At what angle was the ball thrown if its initial
speed was 12.0 m/s, assuming that the smaller of the
two possible angles was used? (b) What other angle
gives the same range, and why would it not be used?
(c) How long did this pass take?

7: Verify the ranges for the projectiles in Figure 5(a)
for θ = 45° and the given initial velocities.
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8: Verify the ranges shown for the projectiles in
Figure 5(b) for an initial velocity of 50 m/s at the given
initial angles.

10: In the standing broad jump, one squats and then
pushes off with the legs to see how far one can jump.
Suppose the extension of the legs from the crouch
position is 0.600 m and the acceleration achieved from
this position is 1.25 times the acceleration due to
gravity, g. How far can they jump? State your
assumptions. (Increased range can be achieved by
swinging the arms in the direction of the jump.)

11: The world long jump record is 8.95 m (Mike Powell,
USA, 1991). Treated as a projectile, what is the maximum
range obtainable by a person if he has a take-off speed
of 9.5 m/s? State your assumptions.

12: A football quarterback is moving straight
backward at a speed of 2.00 m/s when he throws a pass
to a player 18.0 m straight downfield. (a) If the ball is
thrown at an angle of 25° relative to the ground and is
caught at the same height as it is released, what is its
initial speed relative to the ground? (b) How long does
it take to get to the receiver? (c) What is its maximum
height above its point of release?

13: Suppose a soccer player kicks the ball from a
distance 30 m toward the goal. Find the initial speed of
the ball if it just passes over the goal, 2.4 m above the
ground, given the initial direction to be 40° above the
horizontal.
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14: Can a goalkeeper at her/ his goal kick a soccer ball
into the opponent’s goal without the ball touching the
ground? The distance will be about 95 m. A goalkeeper
can give the ball a speed of 30 m/s. Use the maximum
range equation here, assuming the launch angle is 45
degrees.

15: The free throw line in basketball is 4.57 m (15 ft)
from the basket, which is 3.05 m (10 ft) above the floor.
A player standing on the free throw line throws the ball
with an initial speed of 7.15 m/s, releasing it at a height
of 2.44 m (8 ft) above the floor. At what angle above the
horizontal must the ball be thrown to exactly hit the
basket? Note that most players will use a large initial
angle rather than a flat shot because it allows for a
larger margin of error. Explicitly show how you follow
the steps involved in solving projectile motion
problems.

16: In 2007, Michael Carter (U.S.) set a world record in
the shot put with a throw of 24.77 m. What was the
initial speed of the shot if he released it at a height of
2.10 m and threw it at an angle of 38.0° above the
horizontal?

17: A basketball player is running at 5.00 m/s directly
toward the basket when he jumps into the air to dunk
the ball. He maintains his horizontal velocity. (a) What
vertical velocity does he need to rise 0.750 m above the
floor? (b) How far from the basket (measured in the
horizontal direction) must he start his jump to reach his
maximum height at the same time as he reaches the
basket?
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18: A football player punts the ball at a 45.0° angle.
Without an effect from the wind, the ball would travel
60.0 m horizontally. (a) What is the initial speed of the
ball? (b) When the ball is near its maximum height it
experiences a brief gust of wind that reduces its
horizontal velocity by 1.50 m/s. What distance does the
ball travel horizontally?

Glossary

air resistance
a frictional force that slows the motion of objects as they
travel through the air; when solving basic physics
problems, air resistance is assumed to be zero

kinematics
the study of motion without regard to mass or force

motion
displacement of an object as a function of time

projectile
an object that travels through the air and experiences only
acceleration due to gravity

projectile motion
the motion of an object that is subject only to the
acceleration of gravity

range
the maximum horizontal distance that a projectile travels

trajectory
the path of a projectile through the air
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Solutions

Problems & Exercises

1: x = 130 m y=30.9 m

2: (a) 20 m/s (b) 1.22 seconds (c) 9.8 m

3: (a) 3.50 s (b) $\boldsymbol{28.6\textbf{ m/s}}$ (c)
$\boldsymbol{34.3\textbf{ m/s}}$ (d) $\boldsymbol{44.7\
textbf{ m/s}}$, $\boldsymbol{50.2^0}$ below horizontal

5: (a) (b) The arrow will go over the branch.

7:

for

for

for

9: $\boldsymbol{1.50\textbf{ m}}$, assuming launch
angle of

12: yes, the ball lands at 5.3 m from the

net

13: (a) $\boldsymbol{-0.486\textbf{ m}}$ (b) The larger
the muzzle velocity, the smaller the deviation in the
vertical direction, because the time of flight would be
smaller. Air resistance would have the effect of
decreasing the time of flight, therefore increasing the
vertical deviation.
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14: No, the maximum range (neglecting air
resistance) is about 92 m.

16: 15.0 m/s

18: (a) 24.2 m/s (b) The ball travels a total of 57.4 m
with the brief gust of wind.
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29. 4.5 Problem-Solving
Basics

Figure 1. Problem-solving skills are essential to your
success in Biomechanics. (credit: scui3asteveo, Flickr).

Problem-solving skills are obviously essential to success in a
quantitative course such as Biomechanics. More importantly,
the ability to apply broad physical principles, usually
represented by equations, to specific situations is a very
powerful form of knowledge. It is much more powerful than
memorizing a list of facts. Analytical skills and problem-solving
abilities can be applied to new situations, whereas a list of
facts cannot be made long enough to contain every possible
circumstance. Such analytical skills are useful both for solving
problems in this text and for applying physics in everyday and
professional life.
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Problem-Solving Steps

While there is no simple step-by-step method that works for
every problem, the following general procedures facilitate
problem solving and make it more meaningful. A certain
amount of creativity and insight is required as well.

Step 1

Examine the situation to determine which physical principles
are involved. It often helps to draw a simple sketch at the
outset. You will also need to decide which direction is positive
and note that on your sketch. Once you have identified the
physical principles, it is much easier to find and apply the
equations representing those principles. Although finding the
correct equation is essential, keep in mind that equations
represent physical principles, laws of nature, and relationships
among physical quantities. Without a conceptual
understanding of a problem, a numerical solution is
meaningless.

Step 2

Make a list of what is given or can be inferred from the
problem as stated (identify the knowns). Many problems are
stated very succinctly and require some inspection to
determine what is known. A sketch can also be very useful
at this point. Formally identifying the knowns is of particular
importance in applying physics to real-world situations.
Remember, “stopped” means velocity is zero, and we often can
take initial time and position as zero.
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Step 3

Identify exactly what needs to be determined in the problem
(identify the unknowns). In complex problems, especially, it is
not always obvious what needs to be found or in what
sequence. Making a list can help.

Step 4

Find an equation or set of equations that can help you solve
the problem. Your list of knowns and unknowns can help here.
It is easiest if you can find equations that contain only one
unknown—that is, all of the other variables are known, so you
can easily solve for the unknown. If the equation contains more
than one unknown, then an additional equation is needed to
solve the problem. In some problems, several unknowns must
be determined to get at the one needed most. In such
problems it is especially important to keep physical principles
in mind to avoid going astray in a sea of equations. You may
have to use two (or more) different equations to get the final
answer.

Step 5

Substitute the knowns along with their units into the
appropriate equation, and obtain numerical solutions
complete with units. This step produces the numerical answer;
it also provides a check on units that can help you find errors.
If the units of the answer are incorrect, then an error has been
made. However, be warned that correct units do not guarantee
that the numerical part of the answer is also correct.
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Step 6

Check the answer to see if it is reasonable: Does it make sense?
This final step is extremely important—the goal of
biomechanics is to accurately describe human movement. To
see if the answer is reasonable, check both its magnitude and
its sign, in addition to its units. Your judgment will improve as
you solve more and more biomechanics problems, and it will
become possible for you to make finer and finer judgments
regarding whether nature is adequately described by the
answer to a problem. This step brings the problem back to its
conceptual meaning. If you can judge whether the answer is
reasonable, you have a deeper understanding of physics than
just being able to mechanically solve a problem.

When solving problems, we often perform these steps in
different order, and we also tend to do several steps
simultaneously. There is no rigid procedure that will work every
time. Creativity and insight grow with experience, and the
basics of problem solving become almost automatic. One way
to get practice is to work out the text’s examples for yourself as
you read. Another is to work as many end-of-section problems
as possible, starting with the easiest to build confidence and
progressing to the more difficult. Once you become involved in
biomechanics, you will see it all around you, and you can begin
to apply it to situations you encounter outside the classroom,
just as is done in many of the applications in this text.

Unreasonable Results

Biomechanics must describe nature accurately. Some
problems have results that are unreasonable because one
premise is unreasonable or because certain premises are
inconsistent with one another. The physical principle applied
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correctly then produces an unreasonable result. For example,
if a person starting a foot race accelerates at 0.40 m/s2 for
100 s, his final speed will be 40 m/s (about 150 km/h)—clearly
unreasonable because the time of 100 s is an unreasonable
premise. The physics is correct in a sense, but there is more to
describing nature than just manipulating equations correctly.
Checking the result of a problem to see if it is reasonable does
more than help uncover errors in problem solving—it also
builds intuition in judging whether nature is being accurately
described.

Use the following strategies to determine whether an answer
is reasonable and, if it is not, to determine what is the cause.

Step 1

Solve the problem using strategies as outlined and in the
format followed in the worked examples in the text. In the
example given in the preceding paragraph, you would identify
the givens as the acceleration and time and use the equation
below to find the unknown final velocity. That is,

Step 2

Check to see if the answer is reasonable. Is it too large or too
small, or does it have the wrong sign, improper units, …? In this
case, you may need to convert meters per second into a more
familiar unit, such as miles per hour.
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This velocity is about four times greater than a person can
run—so it is too large.

Step 3

If the answer is unreasonable, look for what specifically could
cause the identified difficulty. In the example of the runner,
there are only two assumptions that are suspect. The
acceleration could be too great or the time too long. First look
at the acceleration and think about what the number means. If
someone accelerates at 0.40 m/s2, their velocity is increasing by
0.4 m/s each second. Does this seem reasonable? If so, the time
must be too long. It is not possible for someone to accelerate at
a constant rate of 0.40 m/s2 for 100 s (almost two minutes).

Section Summary

• The six basic problem solving steps for physics are:

Step 1. Examine the situation to determine which physical
principles are involved.

Step 2. Make a list of what is given or can be inferred from
the problem as stated (identify the knowns).

Step 3. Identify exactly what needs to be determined in
the problem (identify the unknowns).

Step 4. Find an equation or set of equations that can help
you solve the problem.

Step 5. Substitute the knowns along with their units into
the appropriate equation, and obtain numerical solutions
complete with units.

Step 6. Check the answer to see if it is reasonable: Does it
make sense?
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Conceptual Questions

1: What information do you need in order to choose
which equation or equations to use to solve a problem?
Explain.

2: What is the last thing you should do when solving
a problem? Explain.
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PART V

CHAPTER 5: ANGULAR
KINEMATICS

Chapter Objectives

After this chapter, you will be able to:

• Observe the kinematics of angular motion.
• Define angular acceleration, velocity and

displacement.
• Relate angular motion to linear motion.
• Evaluate problem solving strategies for angular

kinematics.
• Understand the application of angular

kinematics to biomechanics.
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30. 5.0 Introduction

Figure 1. The body of a
runner moves linearly through the angular motion each lower
limb segment. The thigh rotates about the hip, the shank
rotates about the knee and the foot rotates about the ankle to
move the body forward. (credit: Photo by Laurine
Bailly on Unsplash)

This chapter deals with the simplest form of curved motion,
uniform angular motion, motion in a circular path at constant
speed. Pure rotational (angular) motion occurs when points
in an object move in circular paths centered on one point (the
axis of rotation). Pure translational (linear) motion is motion
with no rotation. Some motion combines both types, such as a
rotating hockey puck moving along ice.

Angular motion is important to biomechanics because most
human movements are the result of angular motions of limbs
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about joint. We thus need to understand how angular motion
is measured and described.

Glossary

uniform circular motion
the motion of an object in a circular path at constant
speed
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31. 5.1 Angular Position
and Displacement

We’ve previously studied motion along a straight line and
introduced such concepts as displacement, velocity, and
acceleration.Then we dealt with motion of one point in two
dimensions. Projectile motion is a special case of two-
dimensional kinematics in which the object is projected into
the air, while being subject to the gravitational force (constant
acceleration). It’s trajectory is predictable using equations of
uniformly accelerated motion. In this chapter, we consider
situations where the objects rotate about a point (the axis of
rotation) while traveling in a circular path. We typically consider
the movement of an entire segment.

Rigid Bodies

An assumption made in biomechanics is that body segments
are rigid bodies. Rigid bodies maintains a constant length.
Instead of representing motion relative to a point (ex: center of
mass) as we did in linear kinematics, we will represent motion
of a rigid body (ex: thigh). This will affect our frame of reference
as movement no longer occur in the x and y-axis. That’s right,
we no longer describe movement in relation to the x and the y
axis of a coordinate system but in relation to the axis of rotation.

Angle
An angle is formed at the intersection of two lines, two planes
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or a line and a plane. Angles are used to define the orientation
of these lines or planes relative to each other.

Frame of Reference

Angular motion occurs about an axis of rotation. In the human
body, this axis of rotation is a joint and the rigid bodies are
the bones rotating about the angle. The axis is always
perpendicular to the plane. For example. if we are interested
in knee angle in the sagittal plane, we’ll be quantifying motion
about the mediolateral axis. The frame of reference is no longer
a cartesian reference system with two orthogonal axis but a
combination of the axis of rotation and a reference axis. In
this course, rotation about the axis of rotation in the clockwise
direction will always be negative and rotation in the
counterclockwise direction will always be positive.

Do you remember the difference between absolute and
relative angles? In absolute angles, the angle of a body
segment is reported relative to the horizontal plane. The
horizontal plane represents a fixed reference. With relative
angles, we measure the angle between two body segments or
lines. In this case, both lines are capable of moving.

Angular Position (θ)
Angular position represents the orientation of a line with
another line or plane. Angular position is quantified by
measuring how far the body is rotated from the reference
position. The angular position is denoted by the symbol theta
(θ) and can be measured in degrees (°), radians (rads) or
revolutions.
Although degrees may be easier for you to interpret, rads play
an important role in biomechanics. A radian is the angle you
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get when making the arc length equal to the radius of the
circle. A radian is equal to 180/pi or 57.3 degrees.

Figure 1. A radian Δθ is defined as the angle if The arc
length Δs had the same length as the radius (r).

This result is the basis for defining the units used to measure
rotation angles, Δθ to be radians(rad), defined so that

A comparison of some useful angles expressed in both degrees
and radians is shown in Table 1.
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Table 1. Comparison of Angular Units.

Angular Displacement
Angular displacement is defined as the change from the final
position to the initial position (Δθ = θf – θi). Angular
displacement represents the angle formed between the final
position and the initial position of a rotating line. As with linear
displacement, angular displacement has a direction
associated with it. Rotation in the clockwise direction
is negative and rotation in the counterclockwise direction is
positive.
In biomechanics, angular displacement is useful when trying
to quantify the range of motion at a joint. If a person starts in
full knee extension (position 1) and squats down (position 2),
we can measure the range of motion at the knee by
measuring the knee angle at both position and using the
formula:

range of motion = θ2– θ1
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Another use of angular displacement in sport is counting
the number of full body rotations. The number of twists or
somersault performed in sports like diving, gymnastics or
snowboarding for example, determine the level of difficulty of
the performance. This aspect is important for the judges who
attribute a score to the performance.

The angular displacement of a swing (range of motion) in
sports like golf, tennis or hockey, affects the manner in which
the ball is hit in these sports. See the relationship between
angular displacement of a segment (ex: hockey stick) and the
resulting linear displacement of a point (ex: the hockey puck)
below:

Angular and Linear Displacement

In angular kinematics we describe the movement of a
segment or rigid body as it rotates about a point. This segment
could be described as a series of points who must each move
linearly to accomplish this change in position. The linear
displacement of each point is unique to the point and depends
on how far it is located from the axis of rotation. The distance
from the axis of rotation to the point of interest is called the
radius (r).

Let’s consider two points ( a and b) along a segment. Let’s
say we are interested in the movement of the arm during a
jumping jack. We observe the movement in the frontal plane
and measure a change in position from 0 degrees to 180
degrees as the participant moves their arm up over their head.
Point a is located on the elbow and point b is located on the
wrist. Both point a and point b must move through 180
degrees. In fact, every point on the arm must move through
180 degrees. But each point on the arm moves a different linear
distance to accomplish this angular displacement of 180
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degrees. Points closest to the shoulder joint (the point of
rotation) don’t have to linearly travel as far as points closest
to the hands to cover the 180 degrees. Point a (elbow) has a
smaller linear displacement than point b (wrist). Point a has
a shorter radius than point b, thus the linear displacement
correlates to how far the point is from the axis of rotation (r).

This relationship is expressed with the following equation:
d = rθ

Note that angular position/displacement MUST be
expressed in rads (not degrees or revolutions) for this
relationship to be accurate.

Section Summary

• Uniform circular motion is motion in a circle at constant
speed. The rotation angle Δθ is defined as the ratio of the
arc length to the radius of curvature:

where arc length Δs is distance traveled along a circular
path and r is the radius of curvature of the circular path.
The quantity Δθ is measured in units of radians (rad), for
which

• The conversion between radians and degrees is 1 rad =
57.3°.

• Angular displacement defines the movement of a
segment as represents the change in angular position.

• Linear displacement of any point along a segment that is
rotation can be calculated with: d = rθ as long as angular
position is expressed in rads.
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Glossary

arc length
Δs, the distance traveled by an object along a circular
path.

rotation angle
the ratio of the arc length to the radius of curvature on a
circular path:

radius of curvature
radius of a circular path

radians
a unit of angle measurement
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32. 5.2 Angular Velocity

Angular Velocity

How fast is an object rotating? We define angular velocity ω as
the rate of change of angular displacement. In symbols, this is

where an angular rotation Δθ takes place in a time Δt. The
greater the rotation angle in a given amount of time, the
greater the angular velocity. The units for angular velocity are
degrees per second (º/s), radians per second (rad/s) or
revolutions per minute (rpm) where applicable.

Angular velocity is a vector quantity. Angular velocity has only
two directions with respect to the axis of rotation—it is either
clockwise or counterclockwise.

Angular velocity is used in two ways in biomechanics. We
are either interests in the average angular velocity or the
instantaneous angular velocity. Average angular velocity tells
us how long it takes for something to rotate through a certain
angular displacement. Instantaneous angular velocity tells us
how fast something is spinning at a specific instant in time.
The average angular velocity of a tennis player’s swing might
determine whether or not she contacts the ball but it is the
racket’s instantaneous velocity at ball contact that determines
how fast and how far the ball will go. In sports where whole
body rotations are important (diving, gymnastics), angular
velocity is an important determinant of whether or not the
athlete will complete a certain number of twists or somersaults
before landing.
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Angular and Linear Velocity

In several sports, especially in those where an implement is
used as an extension of the athlete’s limbs (golf, tennis,
lacrosse..), the relationship between angular and linear velocity
become important. The advantage of using implements is that
they amplify the movement (displacement) of our limbs. Take
a tennis ball and throw it as far as you can. Now hit that same
ball with a tennis racket. Which goes the furthest? The racket
enable faster linear velocities because they increase the
distance from the point of contact (your hand vs the tennis
racket) from the axis of rotation (shoulder joint). The
relationship between linear variables, angular variables and the
radius discussed in the previous section is important here as
well.

The first relationship in v = rω or ω = v / r states that the linear
velocity v is proportional to the distance from the centre of
rotation, thus, it is largest for the point furthest away from the
point of rotation. The second relationship states that the faster
an object rotates (ω), the faster the linear velocity of a point on
the object (v). Note that in order to use this equation, angular
velocity must be expressed in rads/s.

Both and have directions (hence they are angular and
linear velocities, respectively). Angular velocity has only two
directions with respect to the axis of rotation—it is either
clockwise or counterclockwise. Linear velocity is tangent to the
path.
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Figure 4. As an object moves in a circle, here a
fly on the edge of an old-fashioned vinyl
record, its instantaneous velocity is always
tangent to the circle. The direction of the
angular velocity is clockwise in this case.

Applying the relationship between
linear and angular velocity to sport

Think of your favourite sports and the equipment required to
play. If the sport you are thinking about includes the use of
sticks, clubs or rackets you are likely already familiar with the
relationship between linear and angular velocities. The linear
velocity of a point farther from the axis of rotation is faster if
the angular velocity is the same. This linear velocity gets passed
along to the ball (or projectile) through the conservation of
momentum which will be discussed later. In golf for example,
we have two types of clubs: the woods and irons. The woods are
the longest clubs and are used to impart faster velocity to the
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ball as the player drives the ball as far as possible. The irons are
shorter clubs, used for closer shots.

You may not always be switching between a long and a
shorter implement to affect the linear velocity of the projectile
but you can also change the axis of rotation to shorten the
radius. Let’s say a swing typically originates in the shoulder. By
rotating about the wrist you are shortening the radius.

Perhaps you could also move your grip on the apparatus
to shorten or lengthen the radius. This is seen commonly in
baseball as the players choke up on the bat.

PHET EXPLORATIONS: LADYBUG
REVOLUTION

Figure 6. Ladybug Revolution

Join the ladybug in an exploration of rotational
motion. Rotate the merry-go-round to change its
angle, or choose a constant angular velocity or
angular acceleration. Explore how circular motion
relates to the bug’s x,y position, velocity, and
acceleration using vectors or graphs.

• Angular velocity ω is the rate of change of an angle,
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where a rotation Δθ takes place in a time Δt. The units
of angular velocity are radians per second (rad/s). Linear
velocity v and angular velocity ω are related by

• The relationship between linear and angular velocities is
expressed in the following equation: v = rω (angular
velocity must be expressed in rads/s)

Problems & Exercises

1: A baseball pitcher brings his arm forward during a
pitch, rotating the forearm about the elbow. If the
velocity of the ball in the pitcher’s hand is 35.0 m/s and
the ball is 0.300 m from the elbow joint, what is the
angular velocity of the forearm?

2: In lacrosse, a ball is thrown from a net on the end
of a stick by rotating the stick and forearm about the
elbow. If the angular velocity of the ball about the
elbow joint is 30.0 rad/s and the ball is 1.30 m from the
elbow joint, what is the velocity of the ball?

3: Integrated Concepts

When kicking a football, the kicker rotates his leg
about the hip joint.

(a) If the velocity of the tip of the kicker’s shoe is 35.0
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m/s and the hip joint is 1.05 m from the tip of the shoe,
what is the shoe tip’s angular velocity?

(b) The shoe is in contact with the initially stationary
0.500 kg football for 20.0 ms. What average force is
exerted on the football to give it a velocity of 20.0 m/s?

(c) Find the maximum range of the football,
neglecting air resistance. Remember there is an
equation for maximum range. It happens when the
launch angle is 45 degrees above horizontal.

angular velocity
ω, the rate of change of the angle with which an object
moves on a circular path

Solutions

Problems & Exercises

1: 117 rad/second

3: (a) 33.3 rad/s (b) 500 N (c) 40.8 m
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33. 5.3 Angular
Acceleration

Angular acceleration is denoted by the Greek letter alpha (α).
Angular acceleration represents the time rate of change in
angular velocity. Another way to think about this is how quickly
something is speeding up or slowing down.

acceleration (α) = Δω/Δt
The units are rads/s2 or degrees/s2. When velocity is

increasing, the acceleration is in the same direction of rotation
to increase the velocity. When the velocity is decreasing, there
has to be acceleration in the opposite direction of travel acting
as a break to decrease the velocity.

Acceleration has a direction. If the object is moving in the
counterclockwise direction (+) and gaining velocity,
acceleration is positive. If velocity is decreased, acceleration is
negative. If the object is moving in the clockwise direction (-
) and gaining velocity, acceleration is negative. If velocity is
decreased, acceleration is positive.

Example 1: Calculating the Angular
Acceleration and Deceleration of a
Bike Wheel

Suppose a teenager puts her bicycle on its back
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and starts the rear wheel spinning from rest to a
final angular velocity of 250 rpm in 5.00 s. (a)
Calculate the angular acceleration in rad/s2. (b) If
she now slams on the brakes, causing an angular
acceleration of -87.3 rad/s2, how long does it take
the wheel to stop?

Strategy for (a)

The angular acceleration can be found directly

from its definition in because the final

angular velocity and time are given. We see that Δω
is 250 rpm and Δt is 5.00 s.

Solution for (a)

Entering known information into the definition of
angular acceleration, we get

Because Δω is in revolutions per minute (rpm)
and we want the standard units of rad/s2 for angular
acceleration, we need to convert Δω from rpm to
rad/s:

Entering this quantity into the expression for ,
we get

5.3 Angular Acceleration | 295



Strategy for (b)

In this part, we know the angular acceleration and
the initial angular velocity. We can find the
stoppage time by using the definition of angular
acceleration and solving for Δt, yielding

Solution for (b)

Here the angular velocity decreases from 26.2 rad/
s (250 rpm) to zero, so that Δω is -26.2 rad/s, and
is given to be -87.3 rad/s2. Thus,

Discussion

Note that the angular acceleration as the girl
spins the wheel is small and positive; it takes 5 s to
produce an appreciable angular velocity. When she
hits the brake, the angular acceleration is large and
negative. The angular velocity quickly goes to zero.
In both cases, the relationships are analogous to
what happens with linear motion. For example,
there is a large deceleration when you crash into a
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brick wall—the velocity change is large in a short
time interval.

If the bicycle in the preceding example had been on its wheels
instead of upside-down, it would first have accelerated along
the ground and then come to a stop. This connection between
circular motion and linear motion needs to be explored. For
example, it would be useful to know how linear and angular
acceleration are related. In circular motion, linear acceleration
is tangent to the circle at the point of interest, as seen in Figure
2. Thus, linear acceleration is called tangential acceleration at.
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Figure 2. In circular motion, linear acceleration a, occurs
as the magnitude of the velocity changes: a is tangent to
the motion. In the context of circular motion, linear
acceleration is also called tangential acceleration at.

Linear or tangential acceleration refers to changes in the
magnitude of velocity but not its direction. We know that in
circular motion centripetal acceleration, ac, refers to changes in
the direction of the velocity but not its magnitude. An object
undergoing circular motion experiences centripetal
acceleration, as seen in Figure 3. Thus, at and ac are
perpendicular and independent of one another. Tangential
acceleration at is directly related to the angular acceleration
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and is linked to an increase or decrease in the velocity, but not
its direction.

Figure 3. Centripetal acceleration ac occurs as the direction of
velocity changes; it is perpendicular to the circular motion.
Centripetal and tangential acceleration are thus perpendicular
to each other.

Now we can find the exact relationship between linear
acceleration at and angular acceleration . Because linear
acceleration is proportional to a change in the magnitude of
the velocity, it is defined to be
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For circular motion, note that v=rω, so that

The radius r is constant for circular motion, and so Δ(rω)=r(Δω).
Thus,

By definition, Thus,

or

These equations mean that linear acceleration and angular
acceleration are directly proportional. The greater the angular
acceleration is, the larger the linear (tangential) acceleration
is, and vice versa. For example, the greater the angular
acceleration of a bike’s drive wheels, the greater the
acceleration of the bike. The radius also matters. For example,
the smaller a wheel, the smaller its linear acceleration for a
given angular acceleration .

So far, we have defined three rotational quantities— θ, ω,
and . These quantities are analogous to the translational
quantities x, v, and a. Table 1 displays rotational quantities, the
analogous translational quantities, and the relationships
between them.
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Rotational Translational Relationship

Table 1. Rotational and Translational Quantities.

Section Summary

• Uniform circular motion is the motion with a constant

angular velocity

• In non-uniform circular motion, the velocity changes with
time and the rate of change of angular velocity (i.e.

angular acceleration) is

• Linear or tangential acceleration refers to changes in the
magnitude of velocity but not its direction, given as

• For circular motion, note that v=rω, so that

• The radius r is constant for circular motion, and so
Δ(rω)=rΔω. Thus,
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• By definition, Δω/Δt= . Thus,

or

Problems & Exercises

4: Unreasonable Results

You are told that a basketball player spins the ball
with an angular acceleration of 100 rad/s2. (a) What is
the ball’s final angular velocity if the ball starts from
rest and the acceleration lasts 2.00 s? (b) What is
unreasonable about the result? (c) Which premises are
unreasonable or inconsistent?

Glossary

angular acceleration
the rate of change of angular velocity with time

change in angular velocity
the difference between final and initial values of angular
velocity

tangential acceleration
the acceleration in a direction tangent to the circle at the
point of interest in circular motion
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Solutions

Problems & Exercises

4:
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34. 5.4 Linear
Accelerations

When a limb is rotating at an increasing angular velocity, the
tangential (linear) velocity of a point on the limb is increasing
as well. The angular and linear accelerations of a point are
related but unlike velocity, there are two linear accelerations
to consider on rotation objects: tangential and centripetal
acceleration.

Tangential Acceleration

The linear acceleration tangent to the circular path of a point
on a rotating segment is called: tangential acceleration. It
represents the chance in tangential (linear) velocity discussed
in the previous section. Tangential acceleration is related to
angular acceleration in the following way:

at = αr
Keep in mind that in order for this equation to be true,

angular acceleration must be expressed in rads/s2.
Tangent: a line is tangent to a circle if the line intersects the

circle at just one point. A line from this point to the centre of
the circle (radius) is perpendicular to the tangent line.

Centripetal Acceleration

We know from kinematics that acceleration is a change in
velocity, either in its magnitude or in its direction, or both. In
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uniform circular motion, the direction of the velocity changes
constantly, so there is always an associated acceleration, even
though the magnitude of the velocity might be constant. You
experience this acceleration yourself when you turn a corner in
your car. (If you hold the wheel steady during a turn and move
at constant speed, you are in uniform circular motion.) What
you notice is a sideways acceleration because you and the car
are changing direction. The sharper the curve and the greater
your speed, the more noticeable this acceleration will become.
In this section we examine the direction and magnitude of that
acceleration.

Figure 1 shows an object moving in a circular path at
constant speed. The direction of the instantaneous velocity is
shown at two points along the path. Acceleration is in the
direction of the change in velocity, which points directly toward
the center of rotation (the center of the circular path). This
pointing is shown with the vector diagram in the figure. We
call the acceleration of an object moving in uniform circular
motion (resulting from a net external force) the centripetal
acceleration (ac); centripetal means “toward the center” or
“center seeking.”
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Figure 1. The directions of the velocity of an
object at two different points are shown, and
the change in velocity Δv is seen to point
directly toward the center of curvature. (See
small inset.) Because ac = Δv/Δt, the
acceleration is also toward the center; ac is
called centripetal acceleration. (Because Δθ is
very small, the arc length Δs is equal to the
chord length Δr for small time differences.)

The direction of centripetal acceleration is toward the center
of curvature, but what is its magnitude? Note that the triangle
formed by the velocity vectors and the one formed by the radii
r and Δs are similar. Both the triangles ABC and PQR are
isosceles triangles (two equal sides). The two equal sides of the
velocity vector triangle are the speeds v1 = v2 = v. Using the
properties of two similar triangles, we obtain

306 | 5.4 Linear Accelerations



Acceleration is Δv/Δt, and so we first solve this expression for
Δv:

Then we divide this by Δt, yielding

Finally, noting that Δv/Δt = ac and that Δs/Δt = v, the linear or
tangential speed, we see that the magnitude of the centripetal
acceleration is

which is the acceleration of an object in a circle of radius r at
a speed v. So, centripetal acceleration is greater at high speeds
and in sharp curves (smaller radius), as you have noticed when
driving a car. But it is a bit surprising that ac is proportional
to speed squared, implying, for example, that it is four times
as hard to take a curve at 100 km/h than at 50 km/h. A sharp
corner has a small radius, so that ac is greater for tighter turns,
as you have probably noticed.

It is also useful to express ac in terms of angular velocity.
Substituting v = rω into the above expression, we find ac =
(rω)2/r = rω2. We can express the magnitude of centripetal
acceleration using either of two equations:

Recall that the direction of ac is toward the center. You may
use whichever expression is more convenient, as illustrated in
examples below.
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Example 1: How Does the
Centripetal Acceleration of a Car
Around a Curve Compare with That
Due to Gravity?

What is the magnitude of the centripetal
acceleration of a car following a curve of radius 500
m at a speed of 25.0 m/s (about 90 km/h)? Compare
the acceleration with that due to gravity for this
fairly gentle curve taken at highway speed. See
Figure 2(a).

Strategy

Because v and r are given, the first expression in

is the most convenient

to use.

Solution

Entering the given values of v = 25.0 m/s and r =
500 m into the first expression for ac gives

Discussion

To compare this with the acceleration due to
gravity (g = 9.80 m/s2), we take the ratio of ac /g =
(1.25 m/s2)/(9.80m/s2) = 0.128. Thus, ac = 0.128 g and
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is noticeable especially if you were not wearing a
seat belt.
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Figure 2. (a) The car following a
circular path at constant speed is
accelerated perpendicular to its
velocity, as shown. The magnitude of
this centripetal acceleration is found
in Example 1. (b) A particle of mass
in a centrifuge is rotating at
constant angular velocity . It must
be accelerated perpendicular to its
velocity or it would continue in a
straight line. The magnitude of the
necessary acceleration is found in
Example 2.
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Of course, a net external force is needed to cause any
acceleration, just as Newton proposed in his second law of
motion. So a net external force is needed to cause a centripetal
acceleration.

Section Summary

• Centripetal acceleration ac is the acceleration experienced
while in uniform circular motion. It always points toward
the center of rotation. It is perpendicular to the linear
velocity and has the magnitude

• The unit of centripetal acceleration is m/s2.

Conceptual Questions

1: Can centripetal acceleration change the speed of
circular motion? Explain.

Problems & Exercises

1: A runner taking part in the 200 m dash must run

around the end of a track that has a circular arc with a
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radius of curvature of 30 m. If he completes the 200 m
dash in 23.2 s and runs at constant speed throughout
the race, what is the magnitude of his centripetal
acceleration as he runs the curved portion of the track?

2: Olympic ice skaters are able to spin at about 5 rev/s.

(a) What is their angular velocity in radians per
second?

(b) What is the centripetal acceleration of the skater’s
nose if it is 0.120 m from the axis of rotation?

(c) An exceptional skater named Dick Button was
able to spin much faster in the 1950s than anyone
since—at about 9 rev/s. What was the centripetal
acceleration of the tip of his nose, assuming it is at 0.120
m radius?

(d) Comment on the magnitudes of the accelerations
found. It is reputed that Button ruptured small blood
vessels during his spins.

3: Unreasonable Results

A mother pushes her child on a swing so that his
speed is 9.00 m/s at the lowest point of his path. The
swing is suspended 2.00 m above the child’s center of
mass.

(a) What is the magnitude of the centripetal
acceleration of the child at the low point?

(b) What is the magnitude of the force the child
exerts on the seat if his mass is 18.0 kg?

(c) What is unreasonable about these results?
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(d) Which premises are unreasonable or
inconsistent?

Glossary

centripetal acceleration
the acceleration of an object moving in a circle, directed
toward the center

ultracentrifuge
a centrifuge optimized for spinning a rotor at very high
speeds

Solutions

Problems & Exercises

2: (a) (b) (c)

(d) The centripetal acceleration felt by Olympic skaters
is 12 times larger than the acceleration due to gravity.
That’s quite a lot of acceleration in itself. The centripetal
acceleration felt by Button’s nose was 39.2 times larger
than the acceleration due to gravity. It is no wonder
that he ruptured small blood vessels in his spins.

3: (a) (b) $\boldsymbol{905\textbf{

N}}$ (c) The force in part (b) is very large. The
acceleration in part (a) is too much, about 4 g. (d) The
speed of the swing is too large. At the given velocity at
the bottom of the swing, there is enough kinetic
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energy to send the child all the way over the top,
ignoring friction.
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PART VI

CHAPTER 6: LINEAR
KINETICS

Chapter Objectives

After this chapter, you will be able to:

• Define force, mass and inertia
• Understand Newton’s first law of motion.
• Define net force, external force, and system.
• Understand Newton’s second law of motion.
• Apply Newton’s second law to determine the

weight of an object.
• Understand Newton’s third law of motion.
• Define normal and tension forces.
• Apply Newton’s laws of motion to solve

problems involving a variety of forces.
• Define linear momentum.
• Explain the relationship between momentum

and force.
• State Newton’s second law of motion in terms

of momentum.
• Calculate momentum given mass and velocity.
• Define impulse.
• Describe the principle of conservation of

momentum.
• Describe an elastic collision of two objects in

one dimension.
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• Determine the final velocities in an elastic
collision given masses and initial velocities.
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35. 6.0 Introduction

Figure 1. Newton’s laws of motion describe the motion of the
dolphin’s path. (credit: Jin Jang)

Motion itself can be beautiful, causing us to marvel at the
forces needed to achieve spectacular motion, such as that of
a dolphin jumping out of the water, or a pole vaulter, or the
flight of a bird, or the orbit of a satellite. The study of motion
is kinematics, but kinematics only describes the way objects
move—their velocity and their acceleration. Kinetics considers
the forces that affect the motion of moving objects and
systems. Newton’s laws of motion are the foundation of
kinetics. These laws provide an example of the breadth and
simplicity of principles under which nature functions.

Isaac Newton’s (1642–1727) laws of motion were just one part
of the monumental work that has made him legendary. The
development of Newton’s laws marks the transition from the
Renaissance into the modern era. This transition was
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characterized by a revolutionary change in the way people
thought about the physical universe and describe motion.

Figure 2. Isaac Newton’s monumental work, Philosophiae
Naturalis Principia Mathematica, was published in 1687. It
proposed scientific laws that are still used today to describe
the motion of objects. (credit: Service commun de la
documentation de l’Université de Strasbourg)
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36. 6.1 Development of
Force Concept

Summary

• Define force.

Kinetics is the study of the effects of forces on
objects. Dynamics is the study of the forces that cause objects
and systems to move. To understand this, we need a working
definition of force. Our intuitive definition of force—that is, a
push or a pull—is a good place to start. We know that a push
or pull has both magnitude and direction (therefore, it is a
vector quantity) and can vary considerably in each regard. For
example, a baseball pitcher exerts a strong force on a the ball
that is thrown towards the hitter. The earth pulls the high
jumper back down towards the landing mat. Our everyday
experiences also give us a good idea of how multiple forces
add. If two people push in different directions on a third person,
as illustrated in Figure 1, we might expect the total force to be
in the direction shown. Since force is a vector, it adds just like
other vectors, as illustrated in Figure 2(a) for two ice skaters.
Forces, like other vectors, are represented by arrows and can
be added using the familiar head-to-tail method or by
trigonometric methods.
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Figure 1. Part (a) shows an overhead view of two ice
skaters pushing on a third. Forces are vectors and add
like other vectors, so the total force on the third skater is
in the direction shown. In part (b), we see a free-body
diagram representing the forces acting on the third
skater.

Figure 1(b) is our first example of a free-body diagram, which is
a technique used to illustrate all the external forces acting on
a body. The body is represented by a single isolated point (or
free body), and only those forces acting on the body from the
outside (external forces) are shown. (These forces are the only
ones shown, because only external forces acting on the body
affect its motion. We can ignore any internal forces within the
body.) Free-body diagrams are very useful in analyzing forces
acting on a system and are employed extensively in the study
and application of Newton’s laws of motion.

A more quantitative definition of force can be based on some
standard force, just as distance is measured in units relative
to a standard distance. One possibility is to stretch a spring a
certain fixed distance, as illustrated in Figure 2, and use the
force it exerts to pull itself back to its relaxed shape—called
a restoring force—as a standard. The magnitude of all other
forces can be stated as multiples of this standard unit of force.
Many other possibilities exist for standard forces. Some
alternative definitions of force will be given later in this chapter.
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Figure 2. The force exerted by a stretched spring can be used as a
standard unit of force. (a) This spring has a lengthx when undistorted.
(b) When stretched a distance Δx, the spring exerts a restoring force,
Frestore, which is reproducible. (c) A spring scale is one device that
uses a spring to measure force. The force Frestore is exerted on
whatever is attached to the hook. Here Frestore has a magnitude of 6
units in the force standard being employed.

TAKE-HOME EXPERIMENT: FORCE
STANDARDS

To investigate force standards and cause and
effect, get two identical rubber bands. Hang one
rubber band vertically on a hook. Find a small
household item that could be attached to the
rubber band using a paper clip, and use this item as
a weight to investigate the stretch of the rubber
band. Measure the amount of stretch produced in
the rubber band with one, two, and four of these
(identical) items suspended from the rubber band.
What is the relationship between the number of
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items and the amount of stretch? How large a
stretch would you expect for the same number of
items suspended from two rubber bands? What
happens to the amount of stretch of the rubber
band (with the weights attached) if the weights are
also pushed to the side with a pencil?

Section Summary

• Dynamics is the study of how forces affect the motion of
objects.

• Force is a push or pull that can be defined in terms of
various standards, and it is a vector having both
magnitude and direction.

• External forces are any outside forces that act on a body. A
free-body diagram is a drawing of all external forces
acting on a body.

Conceptual Questions

1: Propose a force standard different from the
example of a stretched spring discussed in the text.
Your standard must be capable of producing the same
force repeatedly.
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2: What properties do forces have that allow us to
classify them as vectors?

Glossary

dynamics
the study of how forces affect the motion of objects and
systems

external force
a force acting on an object or system that originates
outside of the object or system

free-body diagram
a sketch showing all of the external forces acting on an
object or system; the system is represented by a dot, and
the forces are represented by vectors extending outward
from the dot

force
a push or pull on an object with a specific magnitude and
direction; can be represented by vectors; can be expressed
as a multiple of a standard force
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37. 6.2 Newton’s First
Law of Motion: Inertia

Summary

• Define mass and inertia.
• Understand Newton’s first law of motion.

Experience suggests that an object at rest will remain at rest
if left alone, and that an object in motion tends to slow down
and stop unless some effort is made to keep it moving. What
Newton’s first law of motion states, however, is the following:

NEWTON’S FIRST LAW OF MOTION

A body at rest remains at rest, or, if in motion,
remains in motion at a constant velocity unless
acted on by a net external force.

Note the repeated use of the verb “remains.” We can think of
this law as preserving the status quo of motion.

Rather than contradicting our experience, Newton’s first law
of motion states that there must be a cause (which is a net
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external force) for there to be any change in velocity (either a
change in magnitude or direction). We will define net external
force in the next section. An object sliding across a table or floor
slows down due to the net force of friction acting on the object.
If friction disappeared, would the object still slow down?

The idea of cause and effect is crucial in accurately describing
what happens in various situations. For example, consider what
happens to an object sliding along a rough horizontal surface.
The object quickly grinds to a halt. If we spray the surface with
talcum powder to make the surface smoother, the object slides
farther. If we make the surface even smoother by rubbing
lubricating oil on it, the object slides farther yet. Extrapolating
to a frictionless surface, we can imagine the object sliding in
a straight line indefinitely. Friction is thus the cause of the
slowing (consistent with Newton’s first law). The object would
not slow down at all if friction were completely eliminated.
Consider an air hockey table. When the air is turned off, the
puck slides only a short distance before friction slows it to a
stop. However, when the air is turned on, it creates a nearly
frictionless surface, and the puck glides long distances without
slowing down. Additionally, if we know enough about the
friction, we can accurately predict how quickly the object will
slow down. Friction is an external force.

Newton’s first law is completely general and can be applied
to anything from an object sliding on a table to a satellite
in orbit to blood pumped from the heart. Experiments have
thoroughly verified that any change in velocity (speed or
direction) must be caused by an external force. The idea of
generally applicable or universal laws is important not only
here—it is a basic feature of all laws of physics. Identifying these
laws is like recognizing patterns in nature from which further
patterns can be discovered.
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Mass

The property of a body to remain at rest or to remain in motion
with constant velocity is called inertia. Newton’s first law is
often called the law of inertia. As we know from experience,
some objects have more inertia than others. It is obviously
more difficult to change the motion of a large boulder than
that of a basketball, for example. The inertia of an object is
measured by its mass. Roughly speaking, mass is a measure of
the amount of “stuff” (or matter) in something. The quantity or
amount of matter in an object is determined by the numbers
of atoms and molecules of various types it contains. Unlike
weight, mass does not vary with location. The mass of an object
is the same on Earth, in orbit, or on the surface of the Moon.
In practice, it is very difficult to count and identify all of the
atoms and molecules in an object, so masses are not often
determined in this manner. Operationally, the masses of
objects are determined by comparison with the standard
kilogram.

Check Your Understanding

1: Which has more mass: a kilogram of cotton balls or
a kilogram of gold?

Section Summary

• Newton’s first law of motion states that a body at rest
remains at rest, or, if in motion, remains in motion at a
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constant velocity unless acted on by a net external force.
This is also known as the law of inertia.

• Inertia is the tendency of an object to remain at rest or
remain in motion. Inertia is related to an object’s mass.

• Mass is the quantity of matter in a substance.

Conceptual Questions

1: How are inertia and mass related?

2: What is the relationship between weight and
mass? Which is an intrinsic, unchanging property of a
body?

Glossary

inertia
the tendency of an object to remain at rest or remain in
motion

law of inertia
see Newton’s first law of motion

mass
the quantity of matter in a substance; measured in
kilograms

Newton’s first law of motion
a body at rest remains at rest, or, if in motion, remains in
motion at a constant velocity unless acted on by a net
external force; also known as the law of inertia
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Solutions

Check Your Understanding

1: They are equal. A kilogram of one substance is
equal in mass to a kilogram of another substance. The
quantities that might differ between them are volume
and density.
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38. 6.3 Newton’s
Second Law of Motion:
Concept of a System

Summary

• Define net force, external force, and system.
• Understand Newton’s second law of motion.
• Apply Newton’s second law to determine the

weight of an object.

Newton’s second law of motion is closely related to Newton’s
first law of motion. It mathematically states the cause and
effect relationship between force and changes in motion.
Newton’s second law of motion is more quantitative and is
used extensively to calculate what happens in situations
involving a force. Before we can write down Newton’s second
law as a simple equation giving the exact relationship of force,
mass, and acceleration, we need to sharpen some ideas that
have already been mentioned.

First, what do we mean by a change in motion? The answer
is that a change in motion is equivalent to a change in velocity.
A change in velocity means, by definition, that there is an
acceleration. Newton’s first law says that a net external force
causes a change in motion; thus, we see that a net external
force causes acceleration.

Another question immediately arises. What do we mean by
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an external force? An intuitive notion of external is correct—an
external force acts from outside the system of interest. For
example, in Figure 1(a) the system of interest is the wagon plus
the child in it. The two forces exerted by the other children
are external forces. An internal force acts between elements
of the system. Again looking at Figure 1(a), the force the child
in the wagon exerts to hang onto the wagon is an internal
force between elements of the system of interest. Only external
forces affect the motion of a system, according to Newton’s
first law. (The internal forces actually cancel, as we shall see
in the next section.) You must define the boundaries of the
system before you can determine which forces are external.
Sometimes the system is obvious, whereas other times
identifying the boundaries of a system is more subtle. The
concept of a system is fundamental to many areas of physics,
as is the correct application of Newton’s laws. This concept will
be revisited many times on our journey through physics.
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Figure 1. Different forces exerted on the same mass
produce different accelerations. (a) Two children push a
wagon with a child in it. Arrows representing all
external forces are shown. The system of interest is the
wagon and its rider. The weight w of the system and
the support of the ground N are also shown for
completeness and are assumed to cancel. The vector f
represents the friction acting on the wagon, and it acts
to the left, opposing the motion of the wagon. (b) All of
the external forces acting on the system add together
to produce a net force, Fnet. The free-body diagram
shows all of the forces acting on the system of interest.
The dot represents the center of mass of the system.
Each force vector extends from this dot. Because there
are two forces acting to the right, we draw the vectors
collinearly. (c) A larger net external force produces a
larger acceleration (a’>a) when an adult pushes the
child.

Now, it seems reasonable that acceleration should be directly
proportional to and in the same direction as the net (total)
external force acting on a system. This assumption has been
verified experimentally and is illustrated in Figure 1. In part (a),
a smaller force causes a smaller acceleration than the larger
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force illustrated in part (c). For completeness, the vertical forces
are also shown; they are assumed to cancel since there is no
acceleration in the vertical direction. The vertical forces are the
weight w and the support of the ground N, and the horizontal
force f represents the force of friction. These will be discussed
in more detail in later sections. For now, we will define friction
as a force that opposes the motion past each other of objects
that are touching. Figure 1(b) shows how vectors representing
the external forces add together to produce a net force, Fnet.

To obtain an equation for Newton’s second law, we first write
the relationship of acceleration and net external force as the
proportionality

where the symbol means “proportional to,” and Fnet is the
net external force. (The net external force is the vector sum of
all external forces and can be determined graphically, using the
head-to-tail method, or analytically, using components. The
techniques are the same as for the addition of other
vectors. This proportionality states what we have said in
words—acceleration is directly proportional to the net external
force. Once the system of interest is chosen, it is important
to identify the external forces and ignore the internal ones.
It is a tremendous simplification not to have to consider the
numerous internal forces acting between objects within the
system, such as muscular forces within the child’s body, let
alone the myriad of forces between atoms in the objects, but
by doing so, we can easily solve some very complex problems
with only minimal error due to our simplification

Now, it also seems reasonable that acceleration should be
inversely proportional to the mass of the system. In other
words, the larger the mass (the inertia), the smaller the
acceleration produced by a given force. And indeed, as
illustrated in Figure 2, the same net external force applied to a
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car produces a much smaller acceleration than when applied
to a basketball. The proportionality is written as

where m is the mass of the system. Experiments have shown
that acceleration is exactly inversely proportional to mass, just
as it is exactly linearly proportional to the net external force.

Figure 2. The same force exerted on systems of different
masses produces different accelerations. (a) A
basketball player pushes on a basketball to make a
pass. (The effect of gravity on the ball is ignored.) (b)
The same player exerts an identical force on a stalled
SUV and produces a far smaller acceleration (even if
friction is negligible). (c) The free-body diagrams are
identical, permitting direct comparison of the two
situations. A series of patterns for the free-body
diagram will emerge as you do more problems.

It has been found that the acceleration of an object depends
only on the net external force and the mass of the object.
Combining the two proportionalities just given yields Newton’s
second law of motion.
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NEWTON’S SECOND LAW OF
MOTION

The acceleration of a system is directly
proportional to and in the same direction as the net
external force acting on the system, and inversely
proportional to its mass.

In equation form, Newton’s second law of motion
is

This is often written in the more familiar form

When only the magnitude of force and
acceleration are considered, this equation is simply

Although these last two equations are really the same, the first
gives more insight into what Newton’s second law means. The
law is a cause and effect relationship among three quantities
that is not simply based on their definitions. The validity of the
second law is completely based on experimental verification.
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Units of Force

is used to define the units of force in terms of

the three basic units for mass, length, and time. The SI unit
of force is called the newton (abbreviated N) and is the force
needed to accelerate a 1-kg system at the rate of 1 m/s2. That is,

,

While almost the entire world uses the newton for the unit of
force, in the United States the most familiar unit of force is the
pound (lb), where 1 N = 0.225 lb.

Weight and the Gravitational Force

When an object is dropped, it accelerates toward the center of
Earth. Newton’s second law states that a net force on an object
is responsible for its acceleration. If air resistance is negligible,
the net force on a falling object is the gravitational force,
commonly called its weight w. Weight can be denoted as a
vector because it has a direction; down is, by definition, the

direction of gravity, and hence weight is a downward force. The
magnitude of weight is denoted as w. Galileo was instrumental
in showing that, in the absence of air resistance, all objects
fall with the same acceleration g. Using Galileo’s result and
Newton’s second law, we can derive an equation for weight.

Consider an object with mass m falling downward toward
Earth. It experiences only the downward force of gravity, which
has magnitude w. Newton’s second law states that the
magnitude of the net external force on an object is Fnet = ma.

Since the object experiences only the downward force of
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gravity, Fnet = w. We know that the acceleration of an object
due to gravity is g, ora = g. Substituting these into Newton’s
second law gives

WEIGHT

This is the equation for weight—the gravitational
force on a mass m:

Since g = 9.80 m/s2 on Earth, the weight of a 1.0 kg
object on Earth is 9.8 N, as we see:

Recall that g can take a positive or negative value,
depending on the positive direction in the
coordinate system. Be sure to take this into
consideration when solving problems with weight.

When the net external force on an object is its weight, we
say that it is in free-fall. That is, the only force acting on the
object is the force of gravity. In the real world, when objects
fall downward toward Earth, they are never truly in free-fall
because there is always some upward force from the air acting
on the object.

The acceleration due to gravity g varies slightly over the
surface of Earth, so that the weight of an object depends on
location and is not an intrinsic property of the object. Weight
varies dramatically if one leaves Earth’s surface. On the Moon,
for example, the acceleration due to gravity is only 1.67 m/s2. A
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1.0-kg mass thus has a weight of 9.8 N on Earth and only about
1.7 N on the Moon.

The broadest definition of weight in this sense is that the
weight of an object is the gravitational force on it from the
nearest large body, such as Earth, the Moon, the Sun, and so
on. This is the most common and useful definition of weight in
physics.

It is important to be aware that weight and mass are very
different physical quantities, although they are closely related.
Mass is the quantity of matter (how much “stuff”) and does
not vary in classical physics, whereas weight is the gravitational
force and does vary depending on gravity. It is tempting to
equate the two, since most of our examples take place on
Earth, where the weight of an object only varies a little with
the location of the object. Furthermore, the terms mass and
weight are used interchangeably in everyday language; for
example, our medical records often show our “weight” in
kilograms, but never in the correct units of newtons.

COMMON MISCONCEPTIONS:
MASS VS. WEIGHT

Mass and weight are often used interchangeably
in everyday language. However, in science, these
terms are distinctly different from one another.
Mass is a measure of how much matter is in an
object. The typical measure of mass is the kilogram
(or the “slug” in English units). Weight, on the other
hand, is a measure of the force of gravity acting on
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an object. Weight is equal to the mass of an object
(m) multiplied by the acceleration due to gravity (g).
Like any other force, weight is measured in terms of
newtons (or pounds in English units).

Assuming the mass of an object is kept intact, it
will remain the same, regardless of its location.
However, because weight depends on the
acceleration due to gravity, the weight of an object
can change when the object enters into a region
with stronger or weaker gravity. For example, the
acceleration due to gravity on the Moon is 1.67 m/s2

(which is much less than the acceleration due to
gravity on Earth, 9.80 m/s2). If you measured your
weight on Earth and then measured your weight on
the Moon, you would find that you “weigh” much
less, even though you do not look any skinnier. This
is because the force of gravity is weaker on the
Moon. In fact, when people say that they are “losing
weight,” they really mean that they are losing “mass”
(which in turn causes them to weigh less).

TAKE-HOME EXPERIMENT: MASS
AND WEIGHT

What do bathroom scales measure? When you
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stand on a bathroom scale, what happens to the
scale? It depresses slightly. The scale contains
springs that compress in proportion to your
weight—similar to rubber bands expanding when
pulled. The springs provide a measure of your
weight (for an object which is not accelerating). This
is a force in newtons (or pounds). In most countries,
the measurement is divided by 9.80 to give a
reading in mass units of kilograms. The scale
measures weight but is calibrated to provide
information about mass. While standing on a
bathroom scale, push down on a table next to you.
What happens to the reading? Why? Would your
scale measure the same “mass” on Earth as on the
Moon?

Example 1: What Acceleration Can
a Person Produce when Pushing a
Lawn Mower?

Suppose that the net external force (push minus
friction) exerted on a lawn mower is 51 N (about 11 lb)
parallel to the ground. The mass of the mower is 24
kg. What is its acceleration?
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Figure 3. The net force on a lawn mower is 51 N to the
right. At what rate does the lawn mower accelerate to the
right?

Strategy

Since Fnet and m are given, the acceleration can
be calculated directly from Newton’s second law as
stated in Fnet = m a.

Solution

The magnitude of the acceleration a is

Entering known values gives

Substituting the units kg⋅m/s2 for N yields
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Discussion

The direction of the acceleration is the same
direction as that of the net force, which is parallel to
the ground. There is no information given in this
example about the individual external forces acting
on the system, but we can say something about
their relative magnitudes. For example, the force
exerted by the person pushing the mower must be
greater than the friction opposing the motion (since
we know the mower moves forward), and the
vertical forces must cancel if there is to be no
acceleration in the vertical direction (the mower is
moving only horizontally). The acceleration found is
small enough to be reasonable for a person pushing
a mower. Such an effort would not last too long
because the person’s top speed would soon be
reached.

Section Summary

• Acceleration, a, is defined as a change in velocity, meaning
a change in its magnitude or direction, or both.

• An external force is one acting on a system from outside
the system, as opposed to internal forces, which act
between components within the system.

• Newton’s second law of motion states that the
acceleration of a system is directly proportional to and in
the same direction as the net external force acting on the
system, and inversely proportional to its mass.

• In equation form, Newton’s second law of motion is
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• This is often written in the more familiar form:Fnet = m a.
• The weight w of an object is defined as the force of gravity

acting on an object of mass m. The object experiences an
acceleration due to gravity g:

• If the only force acting on an object is due to gravity, the
object is in free fall.

• Friction is a force that opposes the motion past each other
of objects that are touching.

Conceptual Questions

1: Which statement is correct? (a) Net force causes
motion. (b) Net force causes change in motion. Explain
your answer and give an example.

2: Why can we neglect forces such as those holding a
body together when we apply Newton’s second law of
motion?

3: Explain how the choice of the “system of interest”
affects which forces must be considered when
applying Newton’s second law of motion.

4: Describe a situation in which the net external force
on a system is not zero, yet its speed remains constant.

5: A system can have a nonzero velocity while the net
external force on it is zero. Describe such a situation.

6: A rock is thrown straight up. What is the net
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external force acting on the rock when it is at the top of
its trajectory?

7: (a) Give an example of different net external forces
acting on the same system to produce different
accelerations. (b) Give an example of the same net
external force acting on systems of different masses,
producing different accelerations. (c) What law
accurately describes both effects? State it in words and
as an equation.

8: If the acceleration of a system is zero, are no
external forces acting on it? What about internal
forces? Explain your answers.

9: If a constant, nonzero force is applied to an object,
what can you say about the velocity and acceleration of
the object?

10: The gravitational force on the basketball in Figure
2 is ignored. When gravity is taken into account, what is
the direction of the net external force on the
basketball—above horizontal, below horizontal, or still
horizontal?

Problems & Exercises

You may assume data taken from illustrations is
accurate to three digits.
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1: A 63.0-kg sprinter starts a race with an acceleration
of 4.20 m/s2.What is the net external force on him?

2: If the sprinter from the previous problem
accelerates at that rate for 20 m, and then maintains
that velocity for the remainder of the 100-m dash, what
will be his time for the race?

3: A cleaner pushes a 4.50-kg laundry cart in such a
way that the net external force on it is 60.0 N. Calculate
the magnitude of its acceleration.

4: Suppose two children push horizontally, but in
exactly opposite directions, on a third child in a wagon.
The first child exerts a force of 75.0 N, the second a
force of 90.0 N, friction is 12.0 N, and the mass of the
third child plus wagon is 23.0 kg. (a) What is the system
of interest if the acceleration of the child in the wagon
is to be calculated? (b) Draw a free-body diagram,
including all forces acting on the system. (c) Calculate
the acceleration. (d) What would the acceleration be if
friction were 15.0 N?

Glossary

acceleration
the rate at which an object’s velocity changes over a
period of time

free-fall
a situation in which the only force acting on an object is
the force due to gravity
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friction
a force past each other of objects that are touching;
examples include rough surfaces and air resistance

net external force
the vector sum of all external forces acting on an object or
system; causes a mass to accelerate

Newton’s second law of motion
the net external force Fnet on an object with mass m is
proportional to and in the same direction as the
acceleration of the object, a, and inversely proportional to

the mass; defined mathematically as

system
defined by the boundaries of an object or collection of
objects being observed; all forces originating from outside
of the system are considered external forces

weight
the force w due to gravity acting on an object of mass m;
defined mathematically as: w = mg, where g is the
magnitude and direction of the acceleration due to gravity

Solutions

Problems & Exercises

1:

3:

4: (a) The system is the child in the wagon plus the
wagon.

(b)
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Figure 8.

(c) in the direction of the

second child’s push. (d)
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39. 6.4 Newton’s Third
Law of Motion:
Symmetry in Forces

Summary

• Understand Newton’s third law of motion.
• Apply Newton’s third law to define systems and

solve problems of motion.

There is a passage in the musical Man of la Mancha that relates
to Newton’s third law of motion. Sancho, in describing a fight
with his wife to Don Quixote, says, “Of course I hit her back,
Your Grace, but she’s a lot harder than me and you know what
they say, ‘Whether the stone hits the pitcher or the pitcher
hits the stone, it’s going to be bad for the pitcher.’” This is
exactly what happens whenever one body exerts a force on
another—the first also experiences a force (equal in magnitude
and opposite in direction). Numerous common experiences,
such as stubbing a toe or throwing a ball, confirm this. It is
precisely stated in Newton’s third law of motion.
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NEWTON’S THIRD LAW OF
MOTION

Whenever one body exerts a force on a second
body, the first body experiences a force that is equal
in magnitude and opposite in direction to the force
that it exerts.

This law represents a certain symmetry in nature: Forces
always occur in pairs, and one body cannot exert a force on
another without experiencing a force itself. We sometimes
refer to this law loosely as “action-reaction,” where the force
exerted is the action and the force experienced as a
consequence is the reaction. Newton’s third law has practical
uses in analyzing the origin of forces and understanding which
forces are external to a system.

We can readily see Newton’s third law at work by taking a
look at how people move about. Consider a swimmer pushing
off from the side of a pool, as illustrated in Figure 1. She pushes
against the pool wall with her feet and accelerates in the
direction opposite to that of her push. The wall has exerted
an equal and opposite force back on the swimmer. You might
think that two equal and opposite forces would cancel, but
they do not because they act on different systems. In this case,
there are two systems that we could investigate: the swimmer
or the wall. If we select the swimmer to be the system of
interest, as in the figure, then Fwall on feet is an external force
on this system and affects its motion. The swimmer moves in
the direction of Fwall on feet. In contrast, the force Ffeet on wall
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acts on the wall and not on our system of interest. Thus Ffeet

on wall does not directly affect the motion of the system and
does not cancel Fwall on feet. Note that the swimmer pushes in
the direction opposite to that in which she wishes to move. The
reaction to her push is thus in the desired direction.

Figure 1. When the swimmer exerts a force Ffeet on wall on the wall, she
accelerates in the direction opposite to that of her push. This means
the net external force on her is in the direction opposite to Ffeet on wall.
This opposition occurs because, in accordance with Newton’s third
law of motion, the wall exerts a force Fwall on feet on her, equal in
magnitude but in the direction opposite to the one she exerts on it.
The line around the swimmer indicates the system of interest. Note
that Ffeet on wall does not act on this system (the swimmer) and, thus,
does not cancel Fwall on feet. Thus the free-body diagram shows only
Fwall on feet, w, the gravitational force, and BF, the buoyant force of
the water supporting the swimmer’s weight. The vertical forces w and
BF cancel since there is no vertical motion.

Other examples of Newton’s third law are easy to find. As a
professor paces in front of a whiteboard, she exerts a force
backward on the floor. The floor exerts a reaction force forward
on the professor that causes her to accelerate forward.
Similarly, a car accelerates because the ground pushes forward
on the drive wheels in reaction to the drive wheels pushing
backward on the ground. You can see evidence of the wheels
pushing backward when tires spin on a gravel road and throw
rocks backward. A professional cage fighters experience
reaction forces when they punch, sometimes breaking their
hand by hitting an opponent’s body.
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Example 1: Getting Up To Speed:
Choosing the Correct System

A biomechanics professor pushes a cart of
demonstration equipment to a lecture hall, as seen
in Figure 2. Her mass is 65.0 kg, the cart’s is 12.0 kg,
and the equipment’s is 7.0 kg. Calculate the
acceleration produced when the professor exerts a
backward force of 150 N on the floor. All forces
opposing the motion, such as friction on the cart’s
wheels and air resistance, total 24.0 N.
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Figure 2. A professor pushes a cart of demonstration
equipment. The lengths of the arrows are proportional to
the magnitudes of the forces (except for f, since it is too
small to draw to scale). Different questions are asked in
each example; thus, the system of interest must be
defined differently for each. System 1 is appropriate for
Example 2, since it asks for the acceleration of the entire
group of objects. Only Ffloor and f are external forces
acting on System 1 along the line of motion. All other
forces either cancel or act on the outside world. System 2
is chosen for this example so that Fprof will be an external
force and enter into Newton’s second law. Note that the
free-body diagrams, which allow us to apply Newton’s
second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the
system to be the professor, cart, and equipment.
This is System 1 in Figure 2. The professor pushes
backward with a force Ffoot of 150 N. According to
Newton’s third law, the floor exerts a forward
reaction force Ffloor of 150 N on System 1. Because all
motion is horizontal, we can assume there is no net
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force in the vertical direction. The problem is
therefore one-dimensional along the horizontal
direction. As noted, f opposes the motion and is
thus in the opposite direction of Ffloor. Note that we
do not include the forces Fprof or Fcart because
these are internal forces, and we do not include Ffoot

because it acts on the floor, not on the system.
There are no other significant forces acting on
System 1. If the net external force can be found from
all this information, we can use Newton’s second law
to find the acceleration as requested. See the free-
body diagram in the figure.

Solution

Newton’s second law is given by

The net external force on System 1 is deduced
from Figure 2 and the discussion above to be

The mass of System 1 is

These values of Fnet and m produce an
acceleration of

Discussion
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None of the forces between components of
System 1, such as between the professor’s hands
and the cart, contribute to the net external force
because they are internal to System 1. Another way
to look at this is to note that forces between
components of a system cancel because they are
equal in magnitude and opposite in direction. For
example, the force exerted by the professor on the
cart results in an equal and opposite force back on
her. In this case both forces act on the same system
and, therefore, cancel. Thus internal forces (between
components of a system) cancel. Choosing System 1
was crucial to solving this problem.

Example 2: Force of the
Cart—Choosing a New System

Calculate the force the professor exerts on the cart
in Figure 2 using data from the previous example if
needed.

Strategy

If we now define the system of interest to be the
cart plus equipment (System 2 in Figure 2), then the
net external force on System 2 is the force the
professor exerts on the cart minus friction. The force
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she exerts on the cart, Fprof, is an external force
acting on System 2. Fprof was internal to System 1,
but it is external to System 2 and will enter Newton’s
second law for System 2.

Solution

Newton’s second law can be used to find Fprof.
Starting with

and noting that the magnitude of the net external
force on System 2 is

we solve for Fprof, the desired quantity:

The value of f is given, so we must calculate net
Fnet. That can be done since both the acceleration
and mass of System 2 are known. Using Newton’s
second law we see that

where the mass of System 2 is 19.0 kg (m= 12.0 kg +
7.0 kg) and its acceleration was found to be a = 1.5
m/s2 in the previous example. Thus,

Now we can find the desired force:
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Discussion

It is interesting that this force is significantly less
than the 150-N force the professor exerted backward
on the floor. Not all of that 150-N force is transmitted
to the cart; some of it accelerates the professor.

The choice of a system is an important analytical
step both in solving problems and in thoroughly
understanding the physics of the situation (which is
not necessarily the same thing).

Section Summary

• Newton’s third law of motion represents a basic
symmetry in nature. It states: Whenever one body exerts a
force on a second body, the first body experiences a force
that is equal in magnitude and opposite in direction to the
force that the first body exerts.

Conceptual Questions

1: Describe a situation in which one system exerts a
force on another and, as a consequence, experiences a
force that is equal in magnitude and opposite in
direction. Which of Newton’s laws of motion apply?

2: An American football lineman reasons that it is
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senseless to try to out-push the opposing player, since
no matter how hard he pushes he will experience an
equal and opposite force from the other player. Use
Newton’s laws and draw a free-body diagram of an
appropriate system to explain how he can still out-push
the opposition if he is strong enough.

Problems & Exercises

1: A brave but inadequate rugby player is being
pushed backward by an opposing player who is
exerting a force of 800 N on him. The mass of the losing
player plus equipment is 90.0 kg, and he is accelerating
at 1.20 m/s2 backward. (a) What is the force of friction
between the losing player’s feet and the grass? (b)
What force does the winning player exert on the
ground to move forward if his mass plus equipment is
110 kg? (c) Draw a sketch of the situation showing the
system of interest used to solve each part. For this
situation, draw a free-body diagram and write the net
force equation.

Glossary

Newton’s third law of motion
whenever one body exerts a force on a second body, the
first body experiences a force that is equal in magnitude
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and opposite in direction to the force that the first body
exerts

Solutions

Problems & Exercises

1: net force on the losing player = m a = (90.0 kg)(1.20
m/s2) = 108 N. The pushing backwards force is 800 N
but the net force is only 108 Ns so that means friction =
(800-108) = 692 N. Without friction the net force would
be 800 N and the player would accelerate very quickly
backwards. b) net force on the winning player = m a =
(110.0 kg)(1.20 m/s2) = 132 N. He is exerting a force of
800 N so the friction force = ?
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40. 6.5 Normal, Tension,
and Other Examples of
Forces

Summary

• Define normal and tension forces.
• Apply Newton’s laws of motion to solve

problems involving a variety of forces.
• Use trigonometric identities to resolve weight

into components.

Forces are given many names, such as push, pull, thrust, lift,
weight, friction, and tension. Traditionally, forces have been
grouped into several categories and given names relating to
their source, how they are transmitted, or their effects. The
most important of these categories are discussed in this
section, together with some interesting applications. Further
examples of forces are discussed later in this text.

Normal Force

Weight (also called force of gravity) is a pervasive force that
acts at all times and must be counteracted to keep an object
from falling. You definitely notice that you must support the
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weight of a heavy object by pushing up on it when you hold
it stationary, as illustrated in Figure 1(a). But how do inanimate
objects like a table support the weight of a mass placed on
them, such as shown in Figure 1(b)? When the bag of dog food
is placed on the table, the table actually sags slightly under
the load. This would be noticeable if the load were placed on
a card table, but even rigid objects deform when a force is
applied to them. Unless the object is deformed beyond its limit,
it will exert a restoring force much like a deformed spring (or
trampoline or diving board). The greater the deformation, the
greater the restoring force. So when the load is placed on the
table, the table sags until the restoring force becomes as large
as the weight of the load. At this point the net external force on
the load is zero. That is the situation when the load is stationary
on the table. The table sags quickly, and the sag is slight so we
do not notice it. But it is similar to the sagging of a trampoline
when you climb onto it.
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Figure 1. (a) The person holding the bag of dog food must supply an
upward force Fhand equal in magnitude and opposite in direction to
the weight of the food w. (b) The card table sags when the dog food is
placed on it, much like a stiff trampoline. Elastic restoring forces in
the table grow as it sags until they supply a force N equal in
magnitude and opposite in direction to the weight of the load.

We must conclude that whatever supports a load, be it
animate or not, must supply an upward force equal to the
weight of the load, as we assumed in a few of the previous
examples. If the force supporting a load is perpendicular to the
surface of contact between the load and its support, this force
is defined to be a normal force and here is given the symbol
N. (This is not the unit for force N.) The word normal means
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perpendicular to a surface. The normal force can be less than
the object’s weight if the object is on an incline, as you will see
in the next example.

COMMON MISCONCEPTIONS:
NORMAL FORCE (N) VS. NEWTON
(N)

In this section we have introduced the quantity
normal force, which is represented by the variable N.
Note: In biomechanics, the normal force (N) is
sometimes referred to as the Ground Reaction Force
(GRF). The N should not be confused with the
symbol for the newton, which is also represented by
the letter N. These symbols are particularly
important to distinguish because the units of a
normal force (N) happen to be newtons (N). For
example, the normal force N that the floor exerts on
a chair might be N = 100 N. One important
difference is that normal force is a vector, while the
newton is simply a unit. Be careful not to confuse
these letters in your calculations! You will encounter
more similarities among variables and units as you
proceed in physics. Another example of this is the
quantity work (W) and the unit watts (W).
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Example 1: Weight on an Incline, a
Two-Dimensional Problem

Consider the skier on a slope shown in Figure 2.
Her mass including equipment is 60.0 kg. (a) What
is her acceleration if friction is negligible? (b) What
is her acceleration if friction is known to be 45.0 N?

Figure 2. Since motion and friction are parallel to the
slope, it is most convenient to project all forces onto a
coordinate system where one axis is parallel to the slope
and the other is perpendicular (axes shown to left of skier).
N is perpendicular to the slope and f is parallel to the
slope, but w has components along both axes. N is equal
in magnitude to the weight component into the slope
(along the perpendicular axis) because there is no motion
perpendicular to the slope, but f is less than the
component of the weight parallel to the slope or w||, so
that there is a down slope acceleration (along the parallel
axis).

Strategy

This is a two-dimensional problem, since the
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forces on the skier (the system of interest) are not
parallel. The approach we have used in two-
dimensional kinematics also works very well here.
Choose a convenient coordinate system and project
the vectors onto its axes, creating two connected
one-dimensional problems to solve. The most
convenient coordinate system for motion on an
incline is one that has one coordinate parallel to the
slope and one perpendicular to the slope.
(Remember that motions along mutually
perpendicular axes are independent.) We use the
symbols and to represent perpendicular and

parallel, respectively. This choice of axes simplifies
this type of problem, because there is no motion
perpendicular to the slope and because friction is
always parallel to the surface between two objects.
The only external forces acting on the system are
the skier’s weight, friction, and the support of the
slope, respectively labeled w, and N in Figure 2. N is
always perpendicular to the slope, and f is parallel to
it. But w is not in the direction of either axis, and so
the first step we take is to project it into
components along the chosen axes, defining to

be the component of weight parallel to the slope
and the component of weight perpendicular
to the slope. Once this is done, we can consider the
two separate problems of forces parallel to the slope
and forces perpendicular to the slope.

Solution

The magnitude of the component of the weight
parallel to the slope is
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and the magnitude of the component of the weight
perpendicular to the slope is

(a) Neglecting friction. Since the acceleration is
parallel to the slope, we need only consider forces
parallel to the slope. (Forces perpendicular to the
slope add to zero, since there is no acceleration in
that direction.) The forces parallel to the slope are
the amount of the skier’s weight parallel to the
slope and friction f. Using Newton’s second law,

with subscripts to denote quantities parallel to the
slope,

where

assuming no friction for this part, so that

is the acceleration.

(b) Including friction. We now have a given value
for friction, and we know its direction is parallel to
the slope and it opposes motion between surfaces
in contact. So the net external force is now
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and substituting this into Newton’s second law,

gives

We substitute known values to obtain

which yields

which is the acceleration parallel to the incline
when there is 45.0 N of opposing friction.

Discussion

Since friction always opposes motion between
surfaces, the acceleration is smaller when there is
friction than when there is none. In fact, it is a
general result that if friction on an incline is
negligible, then the acceleration down the incline is
a = g sin θ, regardless of mass. This is related to the
previously discussed fact that all objects fall with the
same acceleration in the absence of air resistance.
Similarly, all objects, regardless of mass, slide down a
frictionless incline with the same acceleration (if the
angle is the same).
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RESOLVING WEIGHT INTO
COMPONENTS

Figure 3. An object rests on an incline that makes an
angle θ with the horizontal.

When an object rests on an incline that makes an
angle θ with the horizontal, the force of gravity
acting on the object is divided into two
components: a force acting perpendicular to the
plane, and a force acting parallel to the plane,

The perpendicular force of weight, is

typically equal in magnitude and opposite in
direction to the normal force, N. The force acting
parallel to the plane, causes the object to

accelerate down the incline. The force of friction, f,
opposes the motion of the object, so it acts upward
along the plane.

It is important to be careful when resolving the
weight of the object into components. If the angle
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of the incline is at an angle θ to the horizontal, then
the magnitudes of the weight components are

and

Instead of memorizing these equations, it is
helpful to be able to determine them from reason.
To do this, draw the right triangle formed by the
three weight vectors. Notice that the θ of the incline
is the same as the angle formed between and

Knowing this property, you can use
trigonometry to determine the magnitude of the
weight components:

\begin{array}{r @{{}={}}l}
\boldsymbol{\textbf{cos}(\theta)} &

\boldsymbol{\frac{w_{\perp}}{w}} \end{array}

\begin{array}{r @{{}={}}l}
\boldsymbol{\textbf{sin}(\theta)} &

\boldsymbol{\frac{w_{\parallel}}{w}} \end{array}

\boldsymbol{w_{\parallel}} =
\boldsymbol{w\:\textbf{sin}\:(\theta) =

mg\:\textbf{sin}\:(\theta)}

Tension

A tension is a force along the length of a medium, especially a
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force carried by a flexible medium, such as a rope or cable. The
word “tension” comes from a Latin word meaning “to stretch.”
Not coincidentally, the flexible cords that carry muscle forces
to other parts of the body are called tendons. Any flexible
connector, such as a string, rope, chain, wire, or cable, can exert
pulls only parallel to its length; thus, a force carried by a flexible
connector is a tension with direction parallel to the connector.
It is important to understand that tension is a pull in a
connector. In contrast, consider the phrase: “You can’t push a
rope.” The tension force pulls outward along the two ends of a
rope.

Consider a person holding a mass on a rope as shown in
Figure 4.
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Figure 4. When a perfectly flexible
connector (one requiring no force to
bend it) such as this rope transmits a
force T, that force must be parallel to
the length of the rope, as shown. The
pull such a flexible connector exerts
is a tension. Note that the rope pulls
with equal force but in opposite
directions on the hand and the
supported mass (neglecting the
weight of the rope). This is an
example of Newton’s third law. The
rope is the medium that carries the
equal and opposite forces between
the two objects. The tension
anywhere in the rope between the
hand and the mass is equal. Once
you have determined the tension in
one location, you have determined
the tension at all locations along the
rope.

Tension in the rope must equal the weight of the supported
mass, as we can prove using Newton’s second law. If the
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5.00-kg mass in the figure is stationary, then its acceleration is
zero, and thus Fnet = 0. The only external forces acting on the
mass are its weight w and the tension T supplied by the rope.
Thus,

where T and w are the magnitudes of the tension and weight
and their signs indicate direction, with up being positive here.
Thus, just as you would expect, the tension equals the weight
of the supported mass:

For a 5.00-kg mass, then (neglecting the mass of the rope) we
see that

If we cut the rope and insert a spring, the spring would extend
a length corresponding to a force of 49.0 N, providing a direct
observation and measure of the tension force in the rope.

Flexible connectors are often used to transmit forces around
corners, such as in a hospital traction system, a finger joint,
or a bicycle brake cable. If there is no friction, the tension is
transmitted undiminished. Only its direction changes, and it
is always parallel to the flexible connector. This is illustrated in
Figure 5 (a) and (b).
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Figure 5. (a) Tendons in the finger carry force T from the muscles to
other parts of the finger, usually changing the force’s direction, but
not its magnitude (the tendons are relatively friction free). (b) The
brake cable on a bicycle carries the tension T from the handlebars
to the brake mechanism. Again, the direction but not the
magnitude of T is changed.
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Example 2: What Is the Tension in a
Tightrope?

Calculate the tension in the wire supporting the
70.0-kg tightrope walker shown in Figure 6.

Figure 6. The weight of a tightrope walker causes a wire to
sag by 5.0 degrees. The system of interest here is the point
in the wire at which the tightrope walker is standing.

Strategy

As you can see in the figure, the wire is not
perfectly horizontal (it cannot be!), but is bent under
the person’s weight. Thus, the tension on either side
of the person has an upward component that can
support his weight. As usual, forces are vectors
represented pictorially by arrows having the same
directions as the forces and lengths proportional to
their magnitudes. The system is the tightrope
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walker, and the only external forces acting on him
are his weight w and the two tensions TL (left
tension) and TR (right tension), as illustrated. It is
reasonable to neglect the weight of the wire itself.
The net external force is zero since the system is
stationary. A little trigonometry can now be used to
find the tensions. One conclusion is possible at the
outset—we can see from part (b) of the figure that
the magnitudes of the tensions TL and TR must be
equal. This is because there is no horizontal
acceleration in the rope, and the only forces acting
to the left and right are TL and TR. Thus, the
magnitude of those forces must be equal so that
they cancel each other out.

Whenever we have two-dimensional vector
problems in which no two vectors are parallel, the
easiest method of solution is to pick a convenient
coordinate system and project the vectors onto its
axes. In this case the best coordinate system has
one axis horizontal and the other vertical. We call
the horizontal the x-axis and the vertical the y-axis.

Solution

First, we need to resolve the tension vectors into
their horizontal and vertical components. It helps to
draw a new free-body diagram showing all of the
horizontal and vertical components of each force
acting on the system.
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Figure 7. When the vectors are projected onto vertical and
horizontal axes, their components along those axes must
add to zero, since the tightrope walker is stationary. The
small angle results in T being much greater than w.

Consider the horizontal components of the forces
(denoted with a subscript ):

The net external horizontal force Fnetx = 0, since
the person is stationary. Thus,

Now, observe Figure 7. You can use trigonometry
to determine the magnitude of TL and TR. Notice
that:
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Equating TLx and TRx:

Thus,

as predicted. Now, considering the vertical
components (denoted by a subscript y), we can
solve for T. Again, since the person is stationary,
Newton’s second law implies that net Fy = 0. Thus,
as illustrated in the free-body diagram in Figure 7,

Observing Figure 7, we can use trigonometry to
determine the relationship between TLy, TRy, and T.
As we determined from the analysis in the
horizontal direction, TL = TR = T:
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Now, we can substitute the values for TLy and TRy,
into the net force equation in the vertical direction:

and

so that

and the tension is

Discussion

Note that the vertical tension in the wire acts as a
normal force that supports the weight of the
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tightrope walker. The tension is almost six times the
686-N weight of the tightrope walker. Since the wire
is nearly horizontal, the vertical component of its
tension is only a small fraction of the tension in the
wire. The large horizontal components are in
opposite directions and cancel, and so most of the
tension in the wire is not used to support the weight
of the tightrope walker.

If we wish to create a very large tension, all we have to do is
exert a force perpendicular to a flexible connector, as illustrated
in Figure 8. As we saw in the last example, the weight of the
tightrope walker acted as a force perpendicular to the rope. We
saw that the tension in the roped related to the weight of the
tightrope walker in the following way:

We can extend this expression to describe the tension T
created when a perpendicular force or is exerted at the

middle of a flexible connector:

Note that θ is the angle between the horizontal and the bent
connector. In this case, T becomes very large as θ approaches
zero. Even the relatively small weight of any flexible connector
will cause it to sag, since an infinite tension would result if it
were horizontal (i.e., θ = 0 and sinθ = 0). (See Figure 8.)
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Figure 8. We can create a very large tension in the chain by pushing
on it perpendicular to its length, as shown. Suppose we wish to pull a
car out of the mud when no tow truck is available. Each time the car
moves forward, the chain is tightened to keep it as nearly straight as
possible. The tension in the chain is given by T = F⊥ / 2 sin(θ); since θ is
small,T is very large. This situation is analogous to the tightrope
walker shown in Figure 6, except that the tensions shown here are
those transmitted to the car and the tree rather than those acting at
the point where F⊥ is applied.

PHET EXPLORATIONS: FORCES IN 1
DIMENSION

Explore the forces at work when you try to push a
filing cabinet. Create an applied force and see the
resulting friction force and total force acting on the
cabinet. Charts show the forces, position, velocity,
and acceleration vs. time. View a free-body diagram
of all the forces (including gravitational and normal
forces).
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Figure 10. Forces in 1 Dimension

Section Summary

• When objects rest on a surface, the surface applies a force
to the object that supports the weight of the object. This
supporting force acts perpendicular to and away from the
surface. It is called a normal force, N.

• When objects rest on a non-accelerating horizontal
surface, the magnitude of the normal force is equal to the
weight of the object:

• When objects rest on an inclined plane that makes an
angle θ with the horizontal surface, the weight of the
object can be resolved into components that act
perpendicular ( ) and parallel ( ) to the surface of

the plane. These components can be calculated using:

• The pulling force that acts along a stretched flexible
connector, such as a rope or cable, is called tension,
T.When a rope supports the weight of an object that is at
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rest, the tension in the rope is equal to the weight of the
object:

Conceptual Questions

1: If a leg is suspended by a traction setup as shown
in Figure 11, what is the tension in the rope?
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Figure 11. A leg is suspended by a traction system in which
wires are used to transmit forces. Frictionless pulleys change
the direction of the force T without changing its magnitude.

2: In a traction setup for a broken bone, with pulleys
and rope available, how might we be able to increase
the force along the tibia using the same weight? (See
Figure 11.) (Note that the tibia is the shin bone shown in
this image.)
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Problems & Exercises

1: Two teams of nine members each engage in a tug
of war. Each of the first team’s members has an
average mass of 68 kg and exerts an average force of
1350 N horizontally. Each of the second team’s
members has an average mass of 73 kg and exerts an
average force of 1365 N horizontally. (a) What is
magnitude of the acceleration of the two teams? (b)
What is the tension in the section of rope between the
teams?

2: What force does a trampoline have to apply to a
45.0-kg gymnast to accelerate her straight up at 7.50
m/s2? Note that the answer is independent of the
velocity of the gymnast—she can be moving either up
or down, or be stationary.

3: Suppose a 60.0-kg gymnast climbs a rope. (a) What
is the tension in the rope if he climbs at a constant
speed? (b) What is the tension in the rope if he
accelerates upward at a rate of 1.50 m/s2?

4: Consider the baby being weighed in Figure 12. (a)
What is the mass of the child and basket if a scale
reading of 55 N is observed? (b) What is the tension T1

in the cord attaching the baby to the scale? (c) What is
the tension T2 in the cord attaching the scale to the
ceiling, if the scale has a mass of 0.500 kg? (d) Draw a
sketch of the situation indicating the system of interest
used to solve each part. The masses of the cords are
negligible.
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Figure 12. A baby is weighed using a
spring scale.
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Glossary

normal force
the force that a surface applies to an object to support the
weight of the object; acts perpendicular to the surface on
which the object rests. In Biomechanics, the normal force
is often referred to as the ground reaction force (GRF).

tension
the pulling force that acts along a medium, especially a
stretched flexible connector, such as a rope or cable; when
a rope supports the weight of an object, the force on the
object due to the rope is called a tension force

Solutions

Problems & Exercises

1: (a) (b)
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41. 6.6 Friction

Summary

• Discuss the general characteristics of friction.
• Describe the various types of friction.
• Calculate the magnitude of static and kinetic

friction.

Friction is a force that is around us all the time that opposes
relative motion between systems in contact but also allows us
to move (which you have discovered if you have ever tried to
walk on ice). While a common force, the behaviour of friction
is actually very complicated and is still not completely
understood. We have to rely heavily on observations for
whatever understandings we can gain. However, we can still
deal with its more elementary general characteristics and
understand the circumstances in which it behaves.

FRICTION

Friction is a force that opposes relative motion
between systems in contact.
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One of the simpler characteristics of friction is that it is parallel
to the contact surface between systems and always in a
direction that opposes motion or attempted motion of the
systems relative to each other. If two systems are in contact
and moving relative to one another, then the friction between
them is called kinetic friction. For example, friction slows a
hockey puck sliding on ice. But when objects are stationary,
static friction can act between them; the static friction is
usually greater than the kinetic friction between the objects.

KINETIC FRICTION

If two systems are in contact and moving relative
to one another, then the friction between them is
called kinetic friction.

Imagine, for example, trying to slide a heavy crate across a
concrete floor—you may push harder and harder on the crate
and not move it at all. This means that the static friction
responds to what you do—it increases to be equal to and in
the opposite direction of your push. But if you finally push hard
enough, the crate seems to slip suddenly and starts to move.
Once in motion it is easier to keep it in motion than it was to
get it started, indicating that the kinetic friction force is less
than the static friction force. If you add mass to the crate, say
by placing a box on top of it, you need to push even harder to
get it started and also to keep it moving. Furthermore, if you
oiled the concrete you would find it to be easier to get the crate
started and keep it going (as you might expect).

Figure 1 is a crude pictorial representation of how friction
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occurs at the interface between two objects. Close-up
inspection of these surfaces shows them to be rough. So when
you push to get an object moving (in this case, a crate), you
must raise the object until it can skip along with just the tips
of the surface hitting, break off the points, or do both. A
considerable force can be resisted by friction with no apparent
motion. The harder the surfaces are pushed together (such
as if another box is placed on the crate), the more force is
needed to move them. Part of the friction is due to adhesive
forces between the surface molecules of the two objects, which
explain the dependence of friction on the nature of the
substances. Adhesion varies with substances in contact and
is a complicated aspect of surface physics. Once an object is
moving, there are fewer points of contact (fewer molecules
adhering), so less force is required to keep the object moving.
At small but nonzero speeds, friction is nearly independent of
speed.

Figure 1. Frictional forces, such as f, always oppose motion or
attempted motion between objects in contact. Friction arises in part
because of the roughness of the surfaces in contact, as seen in the
expanded view. In order for the object to move, it must rise to where
the peaks can skip along the bottom surface. Thus a force is required
just to set the object in motion. Some of the peaks will be broken off,
also requiring a force to maintain motion. Much of the friction is
actually due to attractive forces between molecules making up the
two objects, so that even perfectly smooth surfaces are not
friction-free. Such adhesive forces also depend on the substances the
surfaces are made of, explaining, for example, why rubber-soled
shoes slip less than those with leather soles.
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The magnitude of the frictional force has two forms: one for
static situations (static friction), the other for when there is
motion (kinetic friction).

When there is no motion between the objects, the
magnitude of static friction fs is

where μs is the coefficient of static friction and N is the
magnitude of the normal force (the force perpendicular to the
surface).

MAGNITUDE OF STATIC FRICTION

Magnitude of static friction fs is

where μs is the coefficient of static friction and N
is the magnitude of the normal force.

The symbol ≤ means less than or equal to, implying that static
friction can have a minimum and a maximum value of μsN.
Static friction is a responsive force that increases to be equal
and opposite to whatever force is exerted, up to its maximum
limit. Once the applied force exceeds fs(max), the object will
move. Thus

Once an object is moving, the magnitude of kinetic friction fk

is given by
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where μk is the coefficient of kinetic friction. A system in which
fk = μkN is described as a system in which friction behaves
simply.

MAGNITUDE OF KINETIC FRICTION

The magnitude of kinetic friction fk is given by

where μk is the coefficient of kinetic friction.

As seen in Table 1, the coefficients of kinetic friction are less
than their static counterparts. That values of μ in Table 1 are
stated to only one or, at most, two digits is an indication of
the approximate description of friction given by the above two
equations.
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Rubber on
dry
concrete

1.0 0.7

Rubber on
wet
concrete

0.7 0.5

Wood on
wood 0.5 0.3

Waxed
wood on
wet snow

0.14 0.1

Metal on
wood 0.5 0.3

Steel on
steel (dry) 0.6 0.3

Steel on
steel (oiled) 0.05 0.03

Teflon on
steel 0.04 0.04

Bone
lubricated
by synovial
fluid

0.016 0.015

Shoes on
wood 0.9 0.7

Shoes on
ice 0.1 0.05

Ice on ice 0.1 0.03

Steel on ice 0.4 0.02

Table 1. Coefficients of Static and Kinetic Friction.

The equations given earlier include the dependence of friction
on materials and the normal force. The direction of friction is
always opposite that of motion, parallel to the surface between
objects, and perpendicular to the normal force. For example, if
the crate you try to push (with a force parallel to the floor) has
a mass of 100 kg, then the normal force would be equal to its
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weight, W = mg = (100 kg)(9.80 m/s2) = 980 N, perpendicular
to the floor. If the coefficient of static friction is 0.45, you would
have to exert a force parallel to the floor greater than fs(max)

= μN = (0.45)(980 N) = 440 N to move the crate. Once there
is motion, friction is less and the coefficient of kinetic friction
might be 0.30, so that a force of only 290 N (fk = μkN =
(0.30)(980 N) = 290 N) would keep it moving at a constant
speed. If the floor is lubricated, both coefficients are
considerably less than they would be without lubrication.
Coefficient of friction is a unit less quantity with a magnitude
usually between 0 and 1.0. The coefficient of the friction
depends on the two surfaces that are in contact.

Many people have experienced the slipperiness of walking on
ice. However, many parts of the body, especially the joints, have
much smaller coefficients of friction—often three or four times
less than ice. A joint is formed by the ends of two bones, which
are connected by thick tissues. The knee joint is formed by the
lower leg bone (the tibia) and the thighbone (the femur). The
hip is a ball (at the end of the femur) and socket (part of the
pelvis) joint. The ends of the bones in the joint are covered by
cartilage, which provides a smooth, almost glassy surface. The
joints also produce a fluid (synovial fluid) that reduces friction
and wear. A damaged or arthritic joint can be replaced by an
artificial joint (Figure 2). These replacements can be made of
metals (stainless steel or titanium) or plastic (polyethylene),
also with very small coefficients of friction.
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Figure 2. Artificial knee replacement is a
procedure that has been performed for more
than 20 years. In this figure, we see the
post-op x rays of the right knee joint
replacement. (credit: Mike Baird, Flickr)

Other natural lubricants include saliva produced in our mouths
to aid in the swallowing process, and the slippery mucus found
between organs in the body, allowing them to move freely
past each other during heartbeats, during breathing, and when
a person moves. Artificial lubricants are also common in
hospitals and doctor’s clinics. For example, when ultrasonic
imaging is carried out, the gel that couples the transducer to
the skin also serves to to lubricate the surface between the
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transducer and the skin—thereby reducing the coefficient of
friction between the two surfaces. This allows the transducer to
mover freely over the skin.

Example 1: Skiing Exercise

A skier with a mass of 62 kg is sliding down a
snowy slope. Find the coefficient of kinetic friction
for the skier if friction is known to be 45.0 N.

Strategy

The magnitude of kinetic friction was given in to
be 45.0 N. Kinetic friction is related to the normal
force N as fk = μkN; thus, the coefficient of kinetic
friction can be found if we can find the normal force
of the skier on a slope. The normal force is always
perpendicular to the surface, and since there is no
motion perpendicular to the surface, the normal
force should equal the component of the skier’s
weight perpendicular to the slope. (See the skier
and free-body diagram in Figure 3.)
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Figure 3. The motion of the skier and friction are parallel
to the slope and so it is most convenient to project all
forces onto a coordinate system where one axis is parallel
to the slope and the other is perpendicular (axes shown to
left of skier). N (the normal force) is perpendicular to the
slope, and f (the friction) is parallel to the slope, but w (the
skier’s weight) has components along both axes, namely
w⊥ and w//. N is equal in magnitude to w⊥, so there is no
motion perpendicular to the slope. However, f is less than
w// in magnitude, so there is acceleration down the slope
(along the x-axis).

That is,

Substituting this into our expression for kinetic
friction, we get

which can now be solved for the coefficient of
kinetic friction μk.

Solution

Solving for μk gives
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Substituting known values on the right-hand side
of the equation,

Discussion

This result is a little smaller than the coefficient
listed in Table 1 for waxed wood on snow, but it is still
reasonable since values of the coefficients of friction
can vary greatly. In situations like this, where an
object of mass m slides down a slope that makes an
angle θ with the horizontal, friction is given by fk =
μkmg cos θ. All objects will slide down a slope with
constant acceleration under these circumstances.
Proof of this is left for this chapter’s Problems and
Exercises.

We have discussed that when an object rests on a horizontal
surface, there is a normal force supporting it equal in
magnitude to its weight. Furthermore, simple friction is always
proportional to the normal force.

PHET EXPLORATIONS: FORCES

6.6 Friction | 395



AND MOTION

Explore the forces at work when you try to push a
filing cabinet. Create an applied force and see the
resulting friction force and total force acting on the
cabinet. Charts show the forces, position, velocity,
and acceleration vs. time. Draw a free-body diagram
of all the forces (including gravitational and normal
forces).

Figure 6. Forces and Motion

Section Summary

• Friction is a contact force between systems that opposes
the motion or attempted motion between them. Simple
friction is proportional to the normal force N pushing the
systems together. (A normal force is always perpendicular
to the contact surface between systems.) Friction depends
on both of the materials involved. The magnitude of static
friction fs between systems stationary relative to one
another is given by
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where μs is the coefficient of static friction, which depends
on both of the materials.

• The kinetic friction force fk between systems moving
relative to one another is given by

where μkis the coefficient of kinetic friction, which also
depends on both materials.

Conceptual Questions

1: Define normal force. What is its relationship to
friction when friction behaves simply?

Problems & Exercises

1: (a) What is the maximum frictional force in the
knee joint of a person who supports 66.0 kg of her
mass on that knee? (b) During strenuous exercise it is
possible to exert forces to the joints that are easily ten
times greater than the weight being supported. What
is the maximum force of friction under such
conditions? The frictional forces in joints are relatively
small in all circumstances except when the joints
deteriorate, such as from injury or arthritis. Increased
frictional forces can cause further damage and pain.

2: A team of eight dogs pulls a sled with waxed wood
runners on wet snow (mush!). The dogs have average

6.6 Friction | 397



masses of 19.0 kg, and the loaded sled with its rider has
a mass of 210 kg. (a) Calculate the magnitude of the
acceleration starting from rest if each dog exerts an
average force of 185 N backward on the snow. (b) What
is the magnitude of the acceleration once the sled
starts to move? (c) For both situations, calculate the
magnitude of the force in the coupling between the
dogs and the sled.

3: Consider the 65.0-kg ice skater being pushed by
two others shown in Figure 7. (a) Find the direction and
magnitude of Ftot, the total force exerted on her by the
others, given that the magnitudes F1 and F2 are 26.4 N
and 18.6 N, respectively. (b) What is her initial
acceleration if she is initially stationary and wearing
steel-bladed skates that point in the direction of Ftot?
(c) What is her acceleration assuming she is already
moving in the direction of Ftot? (Remember that
friction always acts in the direction opposite that of
motion or attempted motion between surfaces in
contact.)
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Figure 7.

4: Show that the acceleration of any object down a
frictionless incline that makes an angle θ with the
horizontal is a = g sin θ. (Note that this acceleration is
independent of mass.)

5: Show that the acceleration of any object down an
incline where friction behaves simply (that is, where fk

= μkN) is a = g (sin θ – μkcos θ). Note that the
acceleration is independent of mass and reduces to the
expression found in the previous problem when friction
becomes negligibly small (μk = 0).

6: Calculate the deceleration of a snow boarder going
up a 5.0°, slope assuming the coefficient of friction for
waxed wood on wet snow. The result of Exercise 9 may
be useful, but be careful to consider the fact that the
snow boarder is going uphill. Explicitly show how you
follow the steps in Chapter 4.6 Problem-Solving
Strategies.
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7: (a) Calculate the acceleration of a skier heading
down a 10.0° slope, assuming the coefficient of friction
for waxed wood on wet snow. (b) Find the angle of the
slope down which this skier could coast at a constant
velocity. You can neglect air resistance in both parts,
and you will find the result of Exercise 9 to be useful.
Explicitly show how you follow the steps in the Chapter
4.6 Problem-Solving Strategies.

8: Consider the 52.0-kg mountain climber in Figure 8.
(a) Find the tension in the rope and the force that the
mountain climber must exert with her feet on the
vertical rock face to remain stationary. Assume that the
force is exerted parallel to her legs. Also, assume
negligible force exerted by her arms. (b) What is the
minimum coefficient of friction between her shoes and
the cliff?
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Figure 8. Part of the climber’s weight
is supported by her rope and part by
friction between her feet and the
rock face.

9: A contestant in a winter sporting event pushes a
45.0-kg block of ice across a frozen lake as shown in
Figure 9(a). (a) Calculate the minimum force F he must
exert to get the block moving. (b) What is the
magnitude of its acceleration once it starts to move, if
that force is maintained?

10: Repeat Exercise 18 with the contestant pulling the
block of ice with a rope over his shoulder at the same
angle above the horizontal as shown in Figure 9(b).
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Figure 9. Which method of sliding a block
of ice requires less force—(a) pushing or (b)
pulling at the same angle above the
horizontal?

Glossary

friction
a force that opposes relative motion or attempts at motion
between systems in contact
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kinetic friction
a force that opposes the motion of two systems that are in
contact and moving relative to one another

static friction
a force that opposes the motion of two systems that are in
contact and are not moving relative to one another

magnitude of static friction
fs ≤ μsN, where μs is the coefficient of static friction and N
is the magnitude of the normal force

magnitude of kinetic friction
fk = μkN, where μk is the coefficient of kinetic friction

Solutions

Problems & Exercises

2: (a)

6:

9: (a) (b)
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42. 6.7 Problem-Solving
Strategies

Summary

• Understand and apply a problem-solving
procedure to solve problems using Newton’s laws
of motion.

Success in problem solving is obviously necessary to
understand and apply physical principles, not to mention the
more immediate need of passing exams. The basics of problem
solving, presented earlier in this text, are followed here, but
specific strategies useful in applying Newton’s laws of motion
are emphasized. These techniques also reinforce concepts that
are useful in many other areas of physics. Many problem-
solving strategies are stated outright in the worked examples,
and so the following techniques should reinforce skills you have
already begun to develop.

Problem-Solving Strategy for
Newton’s Laws of Motion

Step 1. As usual, it is first necessary to identify the physical
principles involved. Once it is determined that Newton’s laws
of motion are involved (if the problem involves forces), it is
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particularly important to draw a careful sketch of the
situation. Such a sketch is shown in Figure 1(a). Then, as in
Figure 1(b), use arrows to represent all forces, label them
carefully, and make their lengths and directions correspond
to the forces they represent (whenever sufficient information
exists).

Figure 1. (a) A sketch of Tarzan hanging from a vine. (b) Arrows are
used to represent all forces. T is the tension in the vine above Tarzan,
FT is the force he exerts on the vine, and w is his weight. All other
forces, such as the nudge of a breeze, are assumed negligible. (c)
Suppose we are given the ape man’s mass and asked to find the
tension in the vine. We then define the system of interest as shown
and draw a free-body diagram. FT is no longer shown, because it is
not a force acting on the system of interest; rather, FT acts on the
outside world. (d) Showing only the arrows, the head-to-tail method
of addition is used. It is apparent that T = -w, if Tarzan is stationary.

Step 2. Identify what needs to be determined and what is
known or can be inferred from the problem as stated. That is,
make a list of knowns and unknowns. Then carefully determine
the system of interest. This decision is a crucial step, since
Newton’s second law involves only external forces. Once the
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system of interest has been identified, it becomes possible to
determine which forces are external and which are internal,
a necessary step to employ Newton’s second law. (See Figure
1(c).) Newton’s third law may be used to identify whether forces
are exerted between components of a system (internal) or
between the system and something outside (external). As
illustrated earlier in this chapter, the system of interest
depends on what question we need to answer. This choice
becomes easier with practice, eventually developing into an
almost unconscious process. Skill in clearly defining systems
will be beneficial in later chapters as well.

A diagram showing the system of interest and all of the
external forces is called a free-body diagram. Only forces are
shown on free-body diagrams, not acceleration or velocity. We
have drawn several of these in worked examples. Figure 1(c)
shows a free-body diagram for the system of interest. Note that
no internal forces are shown in a free-body diagram.

Step 3. Once a free-body diagram is drawn, Newton’s second
law can be applied to solve the problem. This is done in Figure
1(d) for a particular situation. In general, once external forces
are clearly identified in free-body diagrams, it should be a
straightforward task to put them into equation form and solve
for the unknown, as done in all previous examples. If the
problem is one-dimensional—that is, if all forces are
parallel—then they add like scalars. If the problem is two-
dimensional, then it must be broken down into a pair of one-
dimensional problems. This is done by projecting the force
vectors onto a set of axes chosen for convenience. As seen in
previous examples, the choice of axes can simplify the problem.
For example, when an incline is involved, a set of axes with one
axis parallel to the incline and one perpendicular to it is most
convenient. It is almost always convenient to make one axis
parallel to the direction of motion, if this is known.
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Applying Newton’s Second Law

Before you write net force equations, it is critical to
determine whether the system is accelerating in a
particular direction. If the acceleration is zero in a
particular direction, then the net force is zero in that
direction. Similarly, if the acceleration is nonzero in a
particular direction, then the net force is described
by the equation: Fnet = ma. For example, if the
system is accelerating in the horizontal direction,
but it is not accelerating in the vertical direction,
then you will have the following conclusions:

You will need this information in order to
determine unknown forces acting in a system.

Step 4. As always, check the solution to see whether it is
reasonable. In some cases, this is obvious. For example, it is
reasonable to find that friction causes an object to slide down
an incline more slowly than when no friction exists. In practice,
intuition develops gradually through problem solving, and with
experience it becomes progressively easier to judge whether
an answer is reasonable. Another way to check your solution is
to check the units. If you are solving for force and end up with
units of m/s, then you have made a mistake.
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Section Summary

• To solve problems involving Newton’s laws of motion,
follow the procedure described:

1. Draw a sketch of the problem.
2. Identify known and unknown quantities, and identify

the system of interest. Draw a free-body diagram,
which is a sketch showing all of the forces acting on
an object. The object is represented by a dot, and the
forces are represented by vectors extending in
different directions from the dot. If vectors act in
directions that are not horizontal or vertical, resolve
the vectors into horizontal and vertical components
and draw them on the free-body diagram.

3. Write Newton’s second law in the horizontal and
vertical directions and add the forces acting on the
object. If the object does not accelerate in a particular
direction (for example, the x-direction) then Fnetx = 0.
If the object does accelerate in that direction, Fnetx =
ma.

4. Check your answer. Is the answer reasonable? Are the
units correct?

Problems & Exercises

1: Calculate the force a 70.0-kg high jumper must
exert on the ground to produce an upward acceleration
4.00 times the acceleration due to gravity. Explicitly
show how you follow the steps in the Problem-Solving
Strategy for Newton’s laws of motion.
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2: When landing after a spectacular somersault, a
40.0-kg gymnast decelerates by pushing straight down
on the mat. Calculate the force she must exert if her
deceleration is 7.00 times the acceleration due to
gravity. Explicitly show how you follow the steps in the
Problem-Solving Strategy for Newton’s laws of motion.

3: (a) Find the magnitudes of the forces F1 and F2 that
add to give the total force Ftot shown in Figure 2. This
may be done either graphically or by using
trigonometry. (b) Show graphically that the same total
force is obtained independent of the order of addition
of F1 and F2. (c) Find the direction and magnitude of
some other pair of vectors that add to give Ftot. Draw
these to scale on the same drawing used in part (b) or a
similar picture.

Figure 2.

4: Two children pull a third child on a snow saucer
sled exerting forces F1 and F2 as shown from above in
Figure 3. Find the acceleration of the 49.00-kg sled and
child system. Note that the direction of the frictional
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force is unspecified; it will be in the opposite direction
of the sum of F1 and F2.

Figure 3. An overhead view of the horizontal forces
acting on a child’s snow saucer sled.

5: Figure 6 shows Superhero and Trusty Sidekick
hanging motionless from a rope. Superhero’s mass is
90.0 kg, while Trusty Sidekick’s is 55.0 kg, and the mass
of the rope is negligible. (a) Draw a free-body diagram
of the situation showing all forces acting on Superhero,
Trusty Sidekick, and the rope. (b) Find the tension in
the rope above Superhero. (c) Find the tension in the
rope between Superhero and Trusty Sidekick. Indicate
on your free-body diagram the system of interest used
to solve each part.
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Figure 6. Superhero and
Trusty Sidekick hang
motionless on a rope as
they try to figure out what
to do next. Will the tension
be the same everywhere in
the rope?
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6: A nurse pushes a cart by exerting a force on the
handle at a downward angle 35.0° below the horizontal.
The loaded cart has a mass of 28.0 kg, and the force of
friction is 60.0 N. (a) Draw a free-body diagram for the
system of interest. (b) What force must the nurse exert
to move at a constant velocity?

7: Construct Your Own Problem Consider two people
pushing a toboggan with four children on it up a snow-
covered slope. Construct a problem in which you
calculate the acceleration of the toboggan and its load.
Include a free-body diagram of the appropriate system
of interest as the basis for your analysis. Show vector
forces and their components and explain the choice of
coordinates. Among the things to be considered are
the forces exerted by those pushing, the angle of the
slope, and the masses of the toboggan and children.

Solutions

Problems & Exercises

1:
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Figure 8.

1. Use Newton’s laws of motion
2. Given :

Find:

3. so that

The force exerted by the high-jumper is actually
down on the ground, but is up from the
ground and makes him jump.

4. This result is reasonable, since it is quite
possible for a person to exert a force of the
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magnitude of
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43. 6.8 Further
Applications of
Newton’s Laws of
Motion

Summary

• Integrate concepts from kinematics to solve
problems using Newton’s laws of motion.

Integrating Concepts: Newton’s Laws
of Motion and Kinematics

Biomechanics is most interesting and most powerful when
applied to general situations that involve more than a narrow
set of physical principles. Newton’s laws of motion can also
be integrated with other concepts that have been discussed
previously in this text to solve problems of motion. For example,
forces produce accelerations, a topic of kinematics, and hence
the relevance of earlier chapters. When approaching problems
that involve various types of forces, acceleration, velocity, and/
or position, use the following steps to approach the problem:

Problem-Solving Strategy
Step 1. Identify which physical principles are involved. Listing
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the givens and the quantities to be calculated will allow you to
identify the principles involved.

Step 2. Solve the problem using strategies outlined in the text.
If these are available for the specific topic, you should refer
to them. You should also refer to the sections of the text that
deal with a particular topic. The following worked example
illustrates how these strategies are applied to an integrated
concept problem.

Example 4: What Force Must a
Soccer Player Exert to Reach Top
Speed?

A soccer player starts from rest and accelerates
forward, reaching a velocity of 8.00 m/s in 2.50 s. (a)
What was his average acceleration? (b) What
average force did he exert backward on the ground
to achieve this acceleration? The player’s mass is
70.0 kg, and air resistance is negligible.

Strategy

1. To solve an integrated concept problem, we
must first identify the physical principles
involved and identify the chapters in which
they are found. Part (a) of this example
considers acceleration along a straight line.
This is a topic of kinematics. Part (b) deals with
force, a topic of dynamics found in this
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chapter.
2. The following solutions to each part of the

example illustrate how the specific problem-
solving strategies are applied. These involve
identifying knowns and unknowns, checking
to see if the answer is reasonable, and so forth.

Solution for (a)

We are given the initial and final velocities (zero
and 8.00 m/s forward); thus, the change in velocity is
Δv = 8.00 m/s. We are given the elapsed time, and
so Δt = 2.50 s. The unknown is acceleration, which
can be found from its definition:

.

Substituting the known values yields

Discussion for (a)

This is an attainable acceleration for an athlete in
good condition.

Solution for (b)

Here we are asked to find the average force the
player exerts backward to achieve this forward
acceleration. Neglecting air resistance, this would be
equal in magnitude to the net external force on the
player, since this force causes his acceleration. Since
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we now know the player’s acceleration and are
given his mass, we can use Newton’s second law to
find the force exerted. That is,

Substituting the known values of m and a gives

Discussion for (b)

This is about 50 pounds, a reasonable average
force.

This worked example illustrates how to apply
problem-solving strategies to situations that include
topics from different chapters. The first step is to
identify the physical principles involved in the
problem. The second step is to solve for the
unknown using familiar problem-solving strategies.
These strategies are found throughout the text, and
many worked examples show how to use them for
single topics. You will find these techniques for
integrated concept problems useful in applications
of physics outside of a physics course, such as in
your profession, in other science disciplines, and in
everyday life. The following problems will build your
skills in the broad application of physical principles.

Summary

• Newton’s laws of motion can be applied in numerous
situations to solve problems of motion.
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• Some problems will contain multiple force vectors acting
in different directions on an object. Be sure to draw
diagrams, resolve all force vectors into horizontal and
vertical components, and draw a free-body diagram.
Always analyze the direction in which an object
accelerates so that you can determine whether Fnet = ma
or Fnet = 0.

• The normal force on an object is not always equal in
magnitude to the weight of the object. If an object is
accelerating, the normal force will be less than or greater
than the weight of the object. Also, if the object is on an
inclined plane, the normal force will always be less than
the full weight of the object.

• Some problems will contain various physical quantities,
such as forces, acceleration, velocity, or position. You can
apply concepts from kinematics and dynamics in order to
solve these problems of motion.

Problems & Exercises

1: Two muscles in the back of the leg pull upward on
the Achilles tendon, as shown in Figure 4. (These
muscles are called the medial and lateral heads of the
gastrocnemius muscle.) Find the magnitude and
direction of the total force on the Achilles tendon. What
type of movement could be caused by this force?
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Figure 4. Achilles tendon

2: A 76.0-kg person is being pulled away from a
burning building as shown in Figure 5. Calculate the
tension in the two ropes if the person is momentarily
motionless. Include a free-body diagram in your
solution.
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Figure 5. The force T2 needed to hold steady the person being
rescued from the fire is less than her weight and less than the
force T1 in the other rope, since the more vertical rope
supports a greater part of her weight (a vertical force)

3: Integrated Concepts When starting a foot race, a
70.0-kg sprinter exerts an average force of 650 N
backward on the ground for 0.800 s. (a) What is his
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final speed? (b) How far does he travel? Hint: Find his
acceleration first then use kinematics.

4: Integrated Concepts A basketball player jumps
straight up for a ball. To do this, he lowers his body
0.300 m and then accelerates through this distance by
forcefully straightening his legs. This player leaves the
floor with a vertical velocity sufficient to carry him
0.900 m above the floor. (a) Calculate his velocity when
he leaves the floor. (b) Calculate his acceleration while
he is straightening his legs. He goes from zero to the
velocity found in part (a) in a distance of 0.300 m. (c)
Calculate the force he exerts on the floor to do this,
given that his mass is 110 kg.

Solutions

Problems & Exercises

2: T1 = 736 N T2 = 194 N as net force is 0 N so using
magnitudes only

T1 cos 15o + T2 sin 10o = Weight = mg and T1 sin
15o = T2 cos10o
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Figure 6.

3: (a) 7.43 m/s (b) 2.97 m as the acceleration is 650 N
/ 70.0 kg = 9.29 m/s2

4: (a) 4.20 m/s 7 (b) 29.4 m/s2 7 (c) 4.31 x 103 N
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44. 6.9 Introduction to
momentum

Figure 1. Each rugby player has great momentum, which will affect
the outcome of their collisions with each other and the ground.
(credit: ozzzie, Flickr)

We use the term momentum in various ways in everyday
language, and most of these ways are consistent with its
precise scientific definition. We speak of sports teams or
politicians gaining and maintaining the momentum to win.
We also recognize that momentum has something to do with
collisions. For example, looking at the rugby players in the
photograph colliding and falling to the ground, we expect their
momenta to have great effects in the resulting collisions.
Generally, momentum implies a tendency to continue on
course—to move in the same direction—and is associated with
great mass and speed.

Momentum, like energy, is important because it is conserved.
Only a few physical quantities are conserved in nature, and
studying them yields fundamental insight into how nature
works, as we shall see in our study of momentum.
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45. 6.10 Linear
Momentum and Force

Summary

• Define linear momentum.
• Explain the relationship between momentum

and force.
• State Newton’s second law of motion in terms

of momentum.
• Calculate momentum given mass and velocity.

Linear Momentum

The scientific definition of linear momentum is consistent with
most people’s intuitive understanding of momentum: a large,
fast-moving object has greater momentum than a smaller,
slower object. Linear momentum is defined as the product of
a system’s mass multiplied by its velocity. In symbols, linear
momentum is expressed as

Momentum is directly proportional to the object’s mass and
also its velocity. Thus the greater an object’s mass or the greater
its velocity, the greater its momentum. Momentum is a
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vector having the same direction as the velocity . The SI unit

for momentum is kg ⋅ m/s.

LINEAR MOMENTUM

Linear momentum is defined as the product of a
system’s mass multiplied by its velocity:

Example 1: Calculating Momentum:
A Football Player and a Football

(a) Calculate the momentum of a 110-kg football
player running at 8.00 m/s. (b) Compare the player’s
momentum with the momentum of a hard-thrown
0.410-kg football that has a speed of 25.0 m/s.

Strategy

No information is given regarding direction, and
so we can calculate only the magnitude of the
momentum, p. (As usual, a symbol that is in italics is
a magnitude, whereas one that has an arrow is a
vector.) In both parts of this example, the
magnitude of momentum can be calculated
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directly from the definition of momentum given in
the equation, which becomes

when only magnitudes are considered.

Solution for (a)

To determine the momentum of the player,
substitute the known values for the player’s mass
and speed into the equation.

Solution for (b)

To determine the momentum of the ball,
substitute the known values for the ball’s mass and
speed into the equation.

The ratio of the player’s momentum to that of the
ball is

Discussion

Although the ball has greater velocity, the player
has a much greater mass. Thus the momentum of
the player is much greater than the momentum of
the football, as you might guess. As a result, the
player’s motion is only slightly affected if he catches
the ball. We shall quantify what happens in such
collisions in terms of momentum in later sections.
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Momentum and Newton’s Second
Law

The importance of momentum, unlike the importance of
energy, was recognized early in the development of classical
physics. Momentum was deemed so important that it was
called the “quantity of motion.” Newton actually stated his
second law of motion in terms of momentum: The net external
force equals the change in momentum of a system divided by
the time over which it changes. Using symbols, this law is

where is the net external force, is the change in

momentum, and Δt is the change in time.

NEWTON’S SECOND LAW OF
MOTION IN TERMS OF MOMENTUM

The net external force equals the change in
momentum of a system divided by the time over
which it changes.
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MAKING CONNECTIONS: FORCE
AND MOMENTUM

Force and momentum are intimately related.
Force acting over time can change momentum, and
Newton’s second law of motion, can be stated in its
most broadly applicable form in terms of
momentum.

This statement of Newton’s second law of motion includes the

more familiar as a special case. We can derive

this form as follows. First, note that the change in momentum
is given by

If the mass of the system is constant, then

So that for constant mass, Newton’s second law of motion
becomes

Because we get the familiar equation

when the mass of the system is constant.
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Example 2: Calculating Force:
Venus Williams’ Racquet

During the 2007 French Open, Venus Williams hit
the fastest recorded serve in a premier women’s
match, reaching a speed of 58 m/s (209 km/h). What
is the average force exerted on the 0.057-kg tennis
ball by Venus Williams’ racquet, assuming that the
ball’s speed just after impact is 58 m/s, that the
initial horizontal component of the velocity before
impact is negligible, and that the ball remained in
contact with the racquet for 5.0 ms (milliseconds)?

Strategy

This problem involves only one dimension
because the ball starts from having no horizontal
velocity component before impact. Newton’s
second law stated in terms of momentum is then
written as

As noted above, when mass is constant, the
change in momentum is given by

In this example, the velocity just after impact and
the change in time are given; thus, once Δp is
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calculated, can be used to find the

force.

Solution

To determine the change in momentum,
substitute the values for the initial and final
velocities into the equation above.

Now the magnitude of the net external force can

determined by using

where we have retained only two significant
figures in the final step.

Discussion

This quantity was the average force exerted by
Venus Williams’ racquet on the tennis ball during its
brief impact (note that the ball also experienced the
0.56-N force of gravity, but that force was not due to
the racquet). This problem could also be solved by
first finding the acceleration and then using Fnet =
ma, but one additional step would be required
compared with the strategy used in this example.
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Section Summary

• Linear momentum (momentum for brevity) is defined as
the product of a system’s mass multiplied by its velocity.

• In symbols, linear momentum is defined to be

where m is the mass of the system and is its velocity.

• The SI unit for momentum is kg ⋅ m/s.
• Newton’s second law of motion in terms of momentum

states that the net external force equals the change in
momentum of a system divided by the time over which it
changes.

• In symbols, Newton’s second law of motion is defined to
be

is the net external force, is the change in

momentum, and Δt is the change time.

Conceptual Questions

1: An object that has a small mass and an object that
has a large mass have the same momentum. Which
object has the largest kinetic energy?

2: An object that has a small mass and an object that
has a large mass have the same kinetic energy. Which
mass has the largest momentum?
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3: Professional Application

Football coaches advise players to block, hit, and
tackle with their feet on the ground rather than by
leaping through the air. Using the concepts of
momentum, work, and energy, explain how a football
player can be more effective with his feet on the
ground.

4: How can a small force impart the same
momentum to an object as a large force?

linear momentum
the product of mass and velocity

second law of motion
physical law that states that the net external force equals
the change in momentum of a system divided by the time
over which it changes
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46. 6.11 Impulse

Summary

• Define impulse.
• Describe effects of impulses in everyday life.
• Determine the average effective force using

graphical representation.
• Calculate average force and impulse given

mass, velocity, and time.

The effect of a force on an object depends on how long it
acts, as well as how great the force is. For example, in the
tennis swing, very large force acting for a short time had a
great effect on the momentum of the tennis ball. A small force
could cause the same change in momentum, but it would
have to act for a much longer time. For example, if the ball were
thrown upward, the gravitational force (which is much smaller
than the tennis racquet’s force) would eventually reverse the
momentum of the ball. Quantitatively, the effect we are talking
about is the change in momentum

By rearranging the equation to be

we can see how the change in momentum equals the average
net external force multiplied by the time this force acts. The

quantity is given the name impulse. Impulse is the

same as the change in momentum.
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IMPULSE: CHANGE IN
MOMENTUM

Change in momentum equals the average net
external force multiplied by the time this force acts.

The quantity is given the name

impulse.

There are many ways in which an understanding
of impulse can save lives, or at least limbs. The
dashboard padding in a car, and certainly the
airbags, allow the net force on the occupants in the
car to act over a much longer time when there is a
sudden stop. The momentum change is the same
for an occupant, whether an air bag is deployed or
not, but the force (to bring the occupant to a stop)
will be much less if it acts over a larger time. Cars
today have many plastic components. One
advantage of plastics is their lighter weight, which
results in better gas mileage. Another advantage is
that a car will crumple in a collision, especially in the
event of a head-on collision. A longer collision time
means the force on the car will be less. Deaths
during car races decreased dramatically when the
rigid frames of racing cars were replaced with parts
that could crumple or collapse in the event of an
accident.
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Bones in a body will fracture if the force on them
is too large. If you jump onto the floor from a table,
the force on your legs can be immense if you land
stiff-legged on a hard surface. Rolling on the ground
after jumping from the table, or landing with a
parachute, extends the time over which the force
(on you from the ground) acts.

Example 1: Calculating Magnitudes
of Impulses: Two Billiard Balls
Striking a Rigid Wall

Two identical billiard balls strike a rigid wall with
the same speed, and are reflected without any
change of speed. The first ball strikes perpendicular
to the wall. The second ball strikes the wall at an
angle of 30° from the perpendicular, and bounces
off at an angle of 30° from perpendicular to the wall.

(a) Determine the direction of the force on the
wall due to each ball.

(b) Calculate the ratio of the magnitudes of
impulses on the two balls by the wall.

Strategy for (a)

In order to determine the force on the wall,
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consider the force on the ball due to the wall using
Newton’s second law and then apply Newton’s third
law to determine the direction. Assume the x-axis to
be normal to the wall and to be positive in the initial
direction of motion. Choose the y-axis to be along
the wall in the plane of the second ball’s motion. The
momentum direction and the velocity direction are
the same.

Solution for (a)

The first ball bounces directly into the wall and
exerts a force on it in the +x direction. Therefore the
wall exerts a force on the ball in the –x direction. The
second ball continues with the same momentum
component in the y direction, but reverses its
x-component of momentum, as seen by sketching a
diagram of the angles involved and keeping in mind
the proportionality between velocity and
momentum.

These changes mean the change in momentum
for both balls is in the –x direction, so the force of
the wall on each ball is along the –x direction.

Strategy for (b)

Calculate the change in momentum for each ball,
which is equal to the impulse imparted to the ball.

Solution for (b)

Let u be the speed of each ball before and after
collision with the wall, and m the mass of each ball.
Choose the x-axis and y-axis as previously described,
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and consider the change in momentum of the first
ball which strikes perpendicular to the wall.

Impulse is the change in momentum vector.
Therefore the x-component of impulse is equal to
-2mu and the y-component of impulse is equal to
zero.

Now consider the change in momentum of the
second ball.

It should be noted here that while px changes
sign after the collision, py does not. Therefore the
x-component of impulse is equal to -2mu cos 30°
and the y-component of impulse is equal to zero.

The ratio of the magnitudes of the impulse
imparted to the balls is

Discussion

The direction of impulse and force is the same as
in the case of (a); it is normal to the wall and along
the negative x-direction. Making use of Newton’s
third law, the force on the wall due to each ball is
normal to the wall along the positive x-direction.

Our definition of impulse includes an assumption that the
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force is constant over the time interval Δt. Forces are usually
not constant. Forces vary considerably even during the brief
time intervals considered. It is, however, possible to find an
average effective force Feff that produces the same result as
the corresponding time-varying force. Figure 1 shows a graph
of what an actual force looks like as a function of time for
a ball bouncing off the floor. The area under the curve has
units of momentum and is equal to the impulse or change in
momentum between times t1 and t2. That area is equal to the
area inside the rectangle bounded by Feff, t1, and t2. Thus the
impulses and their effects are the same for both the actual and
effective forces.

Figure 1. A graph of force versus time with time along
the x-axis and force along the y-axis for an actual force
and an equivalent effective force. The areas under the
two curves are equal.
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MAKING CONNECTIONS:
TAKE-HOME
INVESTIGATION—HAND
MOVEMENT AND IMPULSE

Try catching a ball while “giving” with the ball,
pulling your hands toward your body. Then, try
catching a ball while keeping your hands still. Hit
water in a tub with your full palm. After the water
has settled, hit the water again by diving your hand
with your fingers first into the water. (Your full palm
represents a swimmer doing a belly flop and your
diving hand represents a swimmer doing a dive.)
Explain what happens in each case and why. Which
orientations would you advise people to avoid and
why?

Everyday Examples: Landing after a Jump

You naturally tend to bend your knees when landing
after a jump, rather than keep your knees locked and
your legs rigid. The reason is that rigid legs bring you to
an abrupt stop, but bending your knees allows you to
spread the landing out over a longer time which
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reduces the average and peak force applied to your
legs.

Stiff and bent-leg landings that
produced the force vs. time data
shown below.

The force vs. time graphs show the normal force
applied to the person landing on one foot after
stepping off from a 0.1 m height as seen in the previous
GIF. The graph on the left was the more rigid leg
landing (it didn’t feel good) and the graph on the right
was a bent-knee landing.
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Force vs. time data for a
stiff-legged landing (red) and
crouching landing (blue).

Notice that the stiff-
legged “hard” landing
nearly doubled the peak
force applied to the body.

Reinforcement Activity

Throw an egg or a water balloon up into the air and
catch it. Did you move your hands with the object as
you caught it on the return, or did you hold your hands
remain still as it arrived?

Adults have learned from experience how to reduce
the force on objects as we control their motion. In my
experience, toddlers do not apply this technique.

Section Summary

• Impulse, or change in momentum, equals the average net
external force multiplied by the time this force acts:

• Forces are usually not constant over a period of time.
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Conceptual Questions

1: Professional Application

Explain in terms of impulse how padding reduces
forces in a collision. State this in terms of a real
example, such as the advantages of a carpeted vs. tile
floor for a day care center.

2: While jumping on a trampoline, sometimes you
land on your back and other times on your feet. In
which case can you reach a greater height and why?

3: Professional Application

Tennis racquets have “sweet spots.” If the ball hits a
sweet spot then the player’s arm is not jarred as much
as it would be otherwise. Explain why this is the case.

Problems & Exercises

1: A person slaps her leg with her hand, bringing her
hand to rest in 2.50 milliseconds from an initial speed
of 4.00 m/s. (a) What is the average force exerted on
the leg, taking the effective mass of the hand and
forearm to be 1.50 kg? (b) Would the force be any
different if the woman clapped her hands together at
the same speed and brought them to rest in the same
time? Explain why or why not.

6.11 Impulse | 443



2: Professional Application

A professional boxer hits his opponent with a 1000-N
horizontal blow that lasts for 0.150 s. (a) Calculate the
impulse imparted by this blow. (b) What is the
opponent’s final velocity, if his mass is 105 kg and he is
motionless in midair when struck near his center of
mass? (c) Calculate the recoil velocity of the opponent’s
10.0-kg head if hit in this manner, assuming the head
does not initially transfer significant momentum to the
boxer’s body. (d) Discuss the implications of your
answers for parts (b) and (c).

3: Calculate the final speed of a 110-kg rugby player
who is initially running at 8.00 m/s but collides head-on
with a padded goalpost and experiences a backward
force of 1.76 × 104 N.

4: Starting with the definitions of momentum and
kinetic energy, derive an equation for the kinetic
energy of a particle expressed as a function of its
momentum.

5: A ball with an initial velocity of 10 m/s moves at an
angle 60° above the +x-direction. The ball hits a vertical
wall and bounces off so that it is moving 60° above the
-x-direction with the same speed. What is the impulse
delivered by the wall?

6: When serving a tennis ball, a player hits the ball
when its velocity is zero (at the highest point of a
vertical toss). The racquet exerts a force of 540 N on the
ball for 5.00 ms, giving it a final velocity of 45.0 m/s.
Using these data, find the mass of the ball.
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7: A punter drops a ball from rest vertically 1 meter
down onto his foot. The ball leaves the foot with a
speed of 18 m/s at an angle 55° above the horizontal.
What is the impulse delivered by the foot (magnitude
and direction)?

Glossary

change in momentum
the difference between the final and initial momentum;
the mass times the change in velocity

impulse
the average net external force times the time it acts; equal
to the change in momentum

Solutions

Problems & Exercises

1: (a) toward the leg (b) The force

on each hand would have the same magnitude as that
found in part (a) (but in opposite directions by
Newton’s third law) because the change in momentum
and the time interval are the same.
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4:

6:
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47. 6.12 Conservation of
Momentum

Summary

• Describe the principle of conservation of
momentum.

• Derive an expression for the conservation of
momentum.

• Explain conservation of momentum with
examples.

Momentum is an important quantity because it is conserved.
Yet it was not conserved in the examples in previous
chapters where large changes in momentum were produced
by forces acting on the system of interest. Under what
circumstances is momentum conserved?

The answer to this question entails considering a sufficiently
large system. It is always possible to find a larger system in
which total momentum is constant, even if momentum
changes for components of the system. If a football player runs
into the goalpost in the end zone, there will be a force on him
that causes him to bounce backward. However, the Earth also
recoils —conserving momentum—because of the force applied
to it through the goalpost. Because Earth is many orders of
magnitude more massive than the player, its recoil is
immeasurably small and can be neglected in any practical
sense, but it is real nevertheless.
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Consider what happens if the masses of two colliding objects
are more similar than the masses of a football player and
Earth—for example, one car bumping into another, as shown
in Figure 1. Both cars are coasting in the same direction when
the lead car (labeled m2) is bumped by the trailing car (labeled
m1). The only unbalanced force on each car is the force of the
collision. (Assume that the effects due to friction are
negligible.) Car 1 slows down as a result of the collision, losing
some momentum, while car 2 speeds up and gains some
momentum. We shall now show that the total momentum of
the two-car system remains constant.

Figure 1. A car of mass m1 moving with a velocity of v1 bumps into
another car of mass m2and velocity v2 that it is following. As a result,
the first car slows down to a velocity of v‘1and the second speeds up
to a velocity of v‘2. The momentum of each car is changed, but the
total momentum ptotof the two cars is the same before and after the
collision (if you assume friction is negligible).

Using the definition of impulse, the change in momentum of
car 1 is given by
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where is the force on car 1 due to car 2, and Δt is the

time the force acts (the duration of the collision). Intuitively, it
seems obvious that the collision time is the same for both cars,
but it is only true for objects traveling at ordinary speeds. This
assumption must be modified for objects travelling near the
speed of light, without affecting the result that momentum is
conserved.

Similarly, the change in momentum of car 2 is

where is the force on car 2 due to car 1, and we assume the

duration of the collision Δt is the same for both cars. We know

from Newton’s third law that , and so

Thus, the changes in momentum are equal and opposite, and

Because the changes in momentum add to zero, the total
momentum of the two-car system is constant. That is,

where and are the momenta of cars 1 and 2 after the

collision. (We often use primes to denote the final state.)
This result—that momentum is conserved—has validity far

beyond the preceding one-dimensional case. It can be similarly
shown that total momentum is conserved for any isolated
system, with any number of objects in it. In equation form, the
conservation of momentum principle for an isolated system is
written
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or

where is the total momentum (the sum of the momenta

of the individual objects in the system) and is the total

momentum some time later. (The total momentum can be
shown to be the momentum of the center of mass of the
system.) An isolated system is defined to be one for which the

net external force is zero

CONSERVATION OF MOMENTUM
PRINCIPLE

ISOLATED SYSTEM

An isolated system is defined to be one for which

the net external force is zero

Perhaps an easier way to see that momentum is conserved for
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an isolated system is to consider Newton’s second law in terms

of momentum, For an isolated system,

thus, and is constant.

We have noted that the three length dimensions in
nature—x, y, and z—are independent, and it is interesting to
note that momentum can be conserved in different ways along
each dimension. For example, during projectile motion and
where air resistance is negligible, momentum is conserved in
the horizontal direction because horizontal forces are zero and
momentum is unchanged. But along the vertical direction, the
net vertical force is not zero and the momentum of the
projectile is not conserved. (See Figure 2.) However, if the
momentum of the projectile-Earth system is considered in the
vertical direction, we find that the total momentum is
conserved.

Figure 2. The horizontal component of a projectile’s momentum is
conserved if air resistance is negligible, even in this case where a
space probe separates. The forces causing the separation are internal
to the system, so that the net external horizontal force Fx-net is still
zero. The vertical component of the momentum is not conserved,
because the net vertical force Fy-net is not zero. In the vertical
direction, the space probe-Earth system needs to be considered and
we find that the total momentum is conserved. The center of mass of
the space probe takes the same path it would if the separation did
not occur.
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Conservation of momentum is violated only when the net
external force is not zero. But another larger system can always
be considered in which momentum is conserved by simply
including the source of the external force. For example, in the
collision of two cars considered above, the two-car system
conserves momentum while each one-car system does not.

MAKING CONNECTIONS:
TAKE-HOME
INVESTIGATION—DROP OF TENNIS
BALL AND A BASEBALL

Hold a tennis ball side by side and in contact with
a basketball. Drop the balls together. (Be careful!)
What happens? Explain your observations. Now
hold the tennis ball above and in contact with the
basketball. What happened? Explain your
observations. What do you think will happen if the
basketball ball is held above and in contact with the
tennis ball?

MAKING CONNECTIONS:
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TAKE-HOME INVESTIGATION—TWO
TENNIS BALLS IN A BALLISTIC
TRAJECTORY

Tie two tennis balls together with a string about a
foot long. Hold one ball and let the other hang down
and throw it in a ballistic trajectory. Explain your
observations. Now mark the center of the string
with bright ink or attach a brightly colored sticker to
it and throw again. What happened? Explain your
observations.

Some aquatic animals such as jellyfish move
around based on the principles of conservation of
momentum. A jellyfish fills its umbrella section with
water and then pushes the water out resulting in
motion in the opposite direction to that of the jet of
water. Squids propel themselves in a similar manner
but, in contrast with jellyfish, are able to control the
direction in which they move by aiming their nozzle
forward or backward. Typical squids can move at
speeds of 8 to 12 km/h.

The ballistocardiograph (BCG) was a diagnostic
tool used in the second half of the 20th century to
study the strength of the heart. About once a
second, your heart beats, forcing blood into the
aorta. A force in the opposite direction is exerted on
the rest of your body (recall Newton’s third law). A
ballistocardiograph is a device that can measure this
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reaction force. This measurement is done by using a
sensor (resting on the person) or by using a moving
table suspended from the ceiling. This technique
can gather information on the strength of the heart
beat and the volume of blood passing from the
heart. However, the electrocardiogram (ECG or EKG)
and the echocardiogram (cardiac ECHO or ECHO; a
technique that uses ultrasound to see an image of
the heart) are more widely used in the practice of
cardiology.

Section Summary

• The conservation of momentum principle is written

or

is the initial total momentum and is the total

momentum some time later.
• An isolated system is defined to be one for which the net

external force is zero

• During projectile motion and where air resistance is
negligible, momentum is conserved in the horizontal
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direction because horizontal forces are zero.
• Conservation of momentum applies only when the net

external force is zero.

Conceptual Questions

1: Professional Application

If you dive into water, you reach greater depths than
if you do a belly flop. Explain this difference in depth
using the concept of conservation of energy. Explain
this difference in depth using what you have learned in
this chapter.

2: Under what circumstances is momentum
conserved?

3: Can momentum be conserved for a system if there
are external forces acting on the system? If so, under
what conditions? If not, why not?

4: Momentum for a system can be conserved in one
direction while not being conserved in another. What is
the angle between the directions? Give an example.

conservation of momentum principle
when the net external force is zero, the total momentum
of the system is conserved or constant

isolated system
a system in which the net external force is zero
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48. 6.13 The
Impulse-Momentum
Theorem

When thinking about how to reduce forces during collisions
we intuitively know that increasing the duration of the collision
is helpful. The combination of the force and collision duration
is known as the impulse. The impulse can be calculated by
multiplying the average net force (Fave) by the duration of the
collision (Δt). (Alternatively, the impulse is equal to the area
underneath the force vs. time curve for the collision such as
those in the previous example). The impulse-momentum
theorem states that the impulse applied to an object will be
equal to the change in its momentum.

Notice that we have calculated the change in momentum
as the initial momentum (mivi) subtracted from the final
momentum (mfvf). If the mass of the object doesn’t change
during the collision, then the initial and final mass are the
same. In this case we call it m and factor it out on the right side
of the equation:

\boldsymbol{\Delta{\vec{\textbf{t}}}\textbf{F}}=\boldsymbol{
m({v_f} - {v_i})}

Now we see that the impulse-momentum theorem shows us
how a small net force applied over a long time can be used to
produce the same velocity change as a large net force applied
over a short time.
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Everyday Example: Landing

A person jumping from a height of 5 m, or about 20
ft, hits the ground with a speed of nearly 10 m/s, or
about 22 mph (we’ll learn how to figure that out later).
Let’s calculate the average force applied to a 100 kg
person during such a landing if the collision with the
ground lasts 1/10 of a second. We start with the
impulse-momentum theorem.

\boldsymbol{\Delta{\vec{\textbf{t}}}\textbf{F}}=\boldsy
mbol{m({v_f} - {v_i})}

We want force, so let’s divide over the collision
duration:

\boldsymbol{{F}}=\boldsymbol{(m({v_f} -
{v_i}))/\Delta{\vec{\textbf{t}}}}

Remembering that direction is important when
working with forces and velocities, we need to define
some directions. Let’s make downward negative so the
initial velocity is -10 m/s. The final velocity is 0 m/s
because the person comes to rest on the ground
during landing. The stated collision duration was 0.1 s,
so we are ready to calculate the average net force:

\boldsymbol{{F}}=\boldsymbol{(100kg({0 m/s} - {-10
m/s}))/{0.1s} = 10, 000N}

We see that the net force is positive, meaning that it
points upward because we chose downward as the
negative direction. This makes sense because the
ground pushes up on the person to provide the
impulse to stop the persons downward motion.
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Finally, we need to remember that we have
calculated the average net force, which how much the
forces are out of balance. This person has a weight of
about 1,000 N (100 kg x 9.8 m/s/s = 1000 N). Weight
acts downward, so to get the required 10,000 N of net
force upward there must actually be a 11,000 N applied
upward on their feet, with 1000 N of that being
cancelled out by their weight.

Spreading the force out over a longer time would
reduce the average force (and peak force) applied to
the person. For example, the the collision were made to
last 5/10 of a second instead of 1/10 of a second, the net
force would be five times smaller:

\boldsymbol{{F}}=\boldsymbol{(100kg({0 m/s} - {-10
m/s}))/{0.5s} = 5, 000N}

And adding the 1000 N body weight to get the total
force on the feet we get 6,000 N.

The people in this video are well practiced at
techniques for reducing forces by extending impact
time.
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A YouTube element has been excluded from

this version of the text. You can view it online here:

https://pressbooks.bccampus.ca/

humanbiomechanics/?p=379

Reinforcement Exercises: Fall time

Apply the impulse-momentum theorem to calculate
the fall time for the person who fell from the 5 m
height in the previous example. [Hint: If we ignore air
resistance, then the only force on them during the fall
is their weight, so that is the net force. You already
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know the initial velocity at the start of the fall is zero,
and the final velocity was given to be 10 m/s.]

It’s important to recognize that we have been applying the
impulse-momentum theorem to only one object involved in
the collision. We know from the Principle of Momentum
Conservation that the total combined momentum change of
all objects involved in a collision is zero, so applying the
impulse-momentum theorem to all of the objects would just
tell us that the total net force on ALL objects during the
collision is zero.
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49. 6.15 Safety
Technology as Related
to Impulse

We have developed a qualitative understanding that
increasing the time over which an object changes velocity will
reduce the size of the force applied to the object. We can
extend what we learned to the design of injury prevention
technology in a quantitative way using the impulse-
momentum relationship:

Force*time = mass*(vf – vi)
The left hand side of the previous equation is known as the

impulse. We can see during a typical collision, the impulse
required is determined by the mass (m) and change in velocity
(vf-vi). Stopping a larger mass will require a larger impulse, as
will causing a greater change to the velocity of any mass. We
also see that for a specific mass and change in velocity in a
particular situation, the overall impulse will be pre-determined
so the average force must go down when the impact time goes
up.

Everyday Example: Airbags

Check out this video of crash-testing with and
without airbags.

During a car crash the driver’s head starts out having
the same velocity as the car to having zero velocity.
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That can happen on impact with the steering wheel or
dashboard, or preferably an airbag. The change in
velocity that occurs is set by the initial driving speed
and the mass of the head doesn’t change during the
collision, so according to the previous equation,
the impulse experienced by the head is known. When
a person’s head is stopped by the steering wheel the
impulse occurs over a short time and the force is large.
When the head is stopped by the airbag the impulse
occurs over a longer time and the force is reduced.

Reinforcement Exercises

A crash test dummy with a 5 kg head mass is sitting
in a car moving at 60 mph (27 m/s), which is stopped
by a slammed into a concrete wall during a crash test.

What is the impulse on the dummy’s head?

High speed camera footage reveals that a crash-test
dummy head comes to rest over roughly 0.05 s when
impacting the steering wheel.What is the average force
applied to the head by the steering wheel?

If the head instead hits an airbag and comes to rest
over 0.2 s, what is the average force applied?

How many times larger is the force applied when
there is no airbag?

Check out this simulation of a lunar lander, which allows you
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to experience hard and soft landings and how changes in
momentum are related to forces applied over time intervals.

Toyota has applied the concepts in this chapter to the
development of Active Headrests to reduce whiplash injury.

A YouTube element has been excluded from this

version of the text. You can view it online here:
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https://pressbooks.bccampus.ca/

humanbiomechanics/?p=387

Understanding that they cannot control the change in
momentum and associated impulse felt by a person during
a collision, car manufactures have created seats that reduce
the force they can apply to the body without compressing.
The time required to compress the seat increases the time it
takes the body to change velocity, which reduces the force on
the body. More importantly, the compressing seat reduces the
distance between the body and the head-rest during a rear-
end collision and provides more time over which the headrest
can move the head to keep up with the body. Toyota has taken
the concept a step further and installed a mechanical linkage
between the seat back and the headrest so that the
compression causes the headrest to move forward, further
increasing its effectiveness.
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PART VII

CHAPTER 7: WORK,
POWER, AND ENERGY

Chapter Objectives

After this chapter, you will be able to:

• Explain how an object must be displaced for a
force on it to do work.

• Explain how relative directions of force and
displacement determine whether the work done
is positive, negative, or zero.

• Explain work as a transfer of energy and net
work as the work done by the net force.

• Explain gravitational potential energy in terms
of work done against gravity.

• Show that the gravitational potential energy of
an object of mass m at height h on Earth is given
by PEg = mgh.

• Explain the law of the conservation of energy.
• Calculate power by calculating changes in

energy over time.
• Explain the human body’s consumption of

energy when at rest vs. when engaged in
activities that do useful work.

• Calculate the conversion of chemical energy in
food into useful work.
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50. 7.0 Introduction

Energy plays an essential role both in
everyday events and in scientific
phenomena. You can no doubt name
many forms of energy, from that
provided by our foods, to the energy we
use to running a marathon or to lift a 250
lbs weight. You can also cite examples
of what people call energy that may not
be scientific, such as someone having
an energetic personality. Not only does
energy have many interesting forms, it is
involved in almost all phenomena, and
is one of the most important concepts
of physics. What makes it even more
important is that the total amount of
energy in the universe is constant.
Energy can change forms, but it cannot
appear from nothing or disappear
without a trace. Energy is thus one of
a handful of physical quantities that we
say is conserved.

Conservation of energy (the principle that energy can neither
be created nor destroyed) is based on experiment. Even as
scientists discovered new forms of energy, conservation of
energy has always been found to apply.

There is no simple, yet accurate, scientific definition for
energy. Energy is characterized by its many forms and the fact
that it is conserved. We can loosely define energy as the ability
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to do work, admitting that in some circumstances not all
energy is available to do work. Because of the association of
energy with work, we begin the chapter with a discussion of
work. Work is intimately related to energy and how energy
moves from one system to another or changes form.
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51. 7.1 Work: The
Scientific Definition

Summary

• Explain how an object must be displaced for a
force on it to do work.

• Explain how relative directions of force and
displacement determine whether the work done
is positive, negative, or zero.

What It Means to Do Work

The scientific definition of work differs in some ways from its
everyday meaning. Certain things we think of as hard work,
such as writing an exam or carrying a heavy load on level
ground, are not work as defined by a scientist. The scientific
definition of work reveals its relationship to energy—whenever
work is done, energy is transferred.

For work, in the scientific sense, to be done, a force must be
exerted and there must be displacement in the direction of the
force.

Formally, the work done on a system by a constant force is
defined to be the product of the component of the force in the
direction of motion times the distance through which the force
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acts. For one-way motion in one dimension, this is expressed in
equation form as

where W is work, d is the displacement of the system, and θ is
the angle between the force vector and the displacement

vector d, as in Figure 1. We can also write this as

To find the work done on a system that undergoes motion that
is not one-way or that is in two or three dimensions, we divide
the motion into one-way one-dimensional segments and add
up the work done over each segment.

WHAT IS WORK?

The work done on a system by a constant force is
the product of the component of the force in the
direction of motion times the distance through
which the force acts. For one-way motion in one
dimension, this is expressed in equation form as

where W is work, F is the magnitude of the force
on the system, d is the magnitude of the
displacement of the system, and θ is the angle
between the force vector and the displacement

vector d.
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Figure 1. Examples of work. (a) The work done by the force F on this
lawn mower isFd cosθ. Note thatF cosθ is the component of the force
in the direction of motion. (b) A person holding a briefcase does no
work on it, because there is no displacement. No energy is transferred
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to or from the briefcase. (c) The person moving the briefcase
horizontally at a constant speed does no work on it, and transfers no
energy to it. (d) Work is done on the briefcase by carrying it up stairs
at constant speed, because there is necessarily a component of force
F in the direction of the motion. Energy is transferred to the briefcase
and could in turn be used to do work. (e) When the briefcase is
lowered, energy is transferred out of the briefcase and into an electric
generator. Here the work done on the briefcase by the generator is
negative, removing energy from the briefcase, because F and d are in
opposite directions.

To examine what the definition of work means, let us consider
the other situations shown in Figure 1. The person holding the
briefcase in Figure 1(b) does no work, for example. Here d = 0,
so W = 0. Why is it you get tired just holding a load? The answer
is that your muscles are doing work against one another, but
they are doing no work on the system of interest. There must
be displacement for work to be done, and there must be a
component of the force in the direction of the motion. For
example, the person carrying the briefcase on level ground
in Figure 1(c) does no work on it, because the force is
perpendicular to the motion. That is, cos 90° = 0, and so W = 0.

In contrast, when a force exerted on the system has a
component in the direction of motion, such as in Figure 1(d),
work is done—energy is transferred to the briefcase. Finally,
in Figure 1(e), energy is transferred from the briefcase to a
generator. There are two good ways to interpret this energy
transfer. One interpretation is that the briefcase’s weight does
work on the generator, giving it energy. The other
interpretation is that the generator does negative work on the
briefcase, thus removing energy from it. The drawing shows
the latter, with the force from the generator upward on the
briefcase, and the displacement downward. This makes θ =
180°, and cos 180° = -1; therefore, W is negative.
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Calculating Work

Work and energy have the same units. From the definition of
work, we see that those units are force times distance. Thus, in
SI units, work and energy are measured in newton-meters. A
newton-meter is given the special name joule (J), and 1 J = 1 N ⋅
m = 1 kg m2/s2. One joule is not a large amount of energy; it
would lift a small 100-gram apple a distance of about 1 meter.

Example 1: Calculating the Work
You Do to Push a Lawn Mower
Across a Large Lawn

How much work is done on the lawn mower by
the person in Figure 1(a) if he exerts a constant force
of 75.0 N at an angle 35° below the horizontal and
pushes the mower 25.0 m on level ground? Convert
the amount of work from joules to kilocalories and
compare it with this person’s average daily intake of
10,000 kJ (about 2400 kcal) of food energy. One
calorie (1 cal) of heat is the amount required to
warm 1 g of water by 1 °C, and is equivalent to 4.184
J, while one food calorie (1 kcal) is equivalent to 4184
J.

Strategy

We can solve this problem by substituting the
given values into the definition of work done on a
system, stated in the equation W = Fd cos θ. The
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force, angle, and displacement are given, so that
only the work W is unknown.

Solution

The equation for the work is

Substituting the known values gives

Converting the work in joules to kilocalories yields
W = (1536 J)(1 kcal/4184 J) = 0.367 kcal. The ratio of
the work done to the daily consumption is

Discussion

This ratio is a tiny fraction of what the person
consumes, but it is typical. Very little of the energy
released in the consumption of food is used to do
work. Even when we “work” all day long, less than
10% of our food energy intake is used to do work and
more than 90% is converted to thermal energy or
stored as chemical energy in fat.

Section Summary

• Work is the transfer of energy by a force acting on an
object as it is displaced.

• The work W that a force does on an object is the
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product of the magnitude F of the force, times the
magnitude d of the displacement, times the cosine of the
angle θ between them. In symbols,

• The SI unit for work and energy is the joule (J), where 1 J = 1
N ⋅ m = 1 kg ⋅ m2/s2.

• The work done by a force is zero if the displacement is
either zero or perpendicular to the force.

• The work done is positive if the force and displacement
have the same direction, and negative if they have
opposite direction.

Conceptual Questions

1: Give an example of a situation in which there is a
force and a displacement, but the force does no work.
Explain why it does no work.

2: Describe a situation in which a force is exerted for a
long time but does no work. Explain.

Problems & Exercises

1: How much work does a supermarket checkout
attendant do on a can of soup that is pushed 0.600 m
horizontally with a force of 5.00 N? Express your answer
in joules and kilocalories.
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2: A 75.0-kg person climbs stairs, gaining 2.50 meters
in height. Find the work done to accomplish this task.

3: Calculate the work done by an 85.0-kg man who
pushes a crate 4.00 m up along a ramp that makes an
angle of 20.0° with the horizontal. (See Figure 2.) He
exerts a force of 500 N on the crate parallel to the ramp
and moves at a constant speed.

a) What is the work done on the crate, b) what is the
work done on himself to lift him up and c) what is the
total work = a + b? This is the work he does on the crate
and on his body to get up the ramp.

Figure 2. A man pushes a crate up a ramp.

4: How much work is done by the boy pulling his
sister 30.0 m in a wagon as shown in Figure 3? Assume
no friction acts on the wagon.
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Figure 3. The boy does work on the system of the
wagon and the child when he pulls them as shown.

5: A shopper pushes a grocery cart 20.0 m at
constant speed on level ground, against a 35.0 N
frictional force. He pushes in a direction 25.0° below the
horizontal. (a) What is the work done on the cart by
friction? (b) What is the work done on the cart by the
gravitational force? (c) What is the work done on the
cart by the shopper? (d) Find the force the shopper
exerts, using energy considerations. (e) What is the
total work done on the cart?

6: Suppose the ski patrol lowers a rescue sled and
victim, having a total mass of 90.0 kg, down a 60.0°
slope at constant speed, as shown in Figure 4. The
coefficient of friction between the sled and the snow is
0.100. (a) How much work is done by friction as the sled
moves 30.0 m along the hill? (b) How much work is
done by the rope on the sled in this distance? (c) What
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is the work done by the gravitational force on the sled?
(d) What is the total work done?

Figure 4. A rescue sled
and victim are lowered
down a steep slope.

Glossary

energy
the ability to do work

work
the transfer of energy by a force that causes an object to
be displaced; the product of the component of the force in
the direction of the displacement and the magnitude of
the displacement
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joule
SI unit of work and energy, equal to one newton-meter

Solutions

Problems & Exercises

1: 3.00 J = 7.17 x 10-4 kcal

3: a) work = force x distance = 2000 J as angle
between force and 4 m is 0 degrees b) m g h where h
= 4m sin 20.0 = 1140 c) 3140 J in total

5: (a) -700 J (b) 0 J (c) 700 J (d) 38.6 N (e) 0 J
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52. 7.2 Kinetic Energy
and the Work-Energy
Theorem

Summary

• Explain work as a transfer of energy and net
work as the work done by the net force.

• Explain and apply the work-energy theorem.

Work Transfers Energy

What happens to the work done on a system? Energy is
transferred into the system, but in what form? Does it remain in
the system or move on? The answers depend on the situation.
For example, if the lawn mower in Chapter 7.1 Figure 1(a) is
pushed just hard enough to keep it going at a constant speed,
then energy put into the mower by the person is removed
continuously by friction, and eventually leaves the system in
the form of heat transfer. In contrast, work done on the
briefcase by the person carrying it up stairs in Chapter 7.1
Figure 1(d) is stored in the briefcase-Earth system and can be
recovered at any time, as shown in Chapter 7.1 Figure 1(e). In
fact, the building of the pyramids in ancient Egypt is an
example of storing energy in a system by doing work on the
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system. Some of the energy imparted to the stone blocks in
lifting them during construction of the pyramids remains in
the stone-Earth system and has the potential to do work.

In this section we begin the study of various types of work
and forms of energy. We will find that some types of work leave
the energy of a system constant, for example, whereas others
change the system in some way, such as making it move. We
will also develop definitions of important forms of energy, such
as the energy of motion.

Net Work and the Work-Energy
Theorem

We know from the study of Newton’s laws that net force causes
acceleration. We will see in this section that work done by the
net force gives a system energy of motion, and in the process
we will also find an expression for the energy of motion.

Let us start by considering the total, or net, work done on
a system. Net work is defined to be the sum of work done by
all external forces—that is, net work is the work done by the
net external force Fnet. In equation form, this is Wnet = Fnetd
cos θ where θ is the angle between the force vector and the
displacement vector.

Figure 1(a) shows a graph of force versus displacement for
the component of the force in the direction of the
displacement—that is, an F cos θ vs. d graph. In this case, F
cos θ is constant. You can see that the area under the graph is
Fd cos θ, or the work done. Figure 1(b) shows a more general
process where the force varies. The area under the curve is
divided into strips, each having an average force (F cos θ)i(ave).
The work done is (F cos θ)i(ave)di for each strip, and the total
work done is the sum of the Wi. Thus the total work done is the
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total area under the curve, a useful property to which we shall
refer later.

Figure 1. (a) A graph of F cos θ vs.d, when F
cos θ is constant. The area under the curve
represents the work done by the force. (b) A
graph of F cos θ vs. d in which the force
varies. The work done for each interval is the
area of each strip; thus, the total area under
the curve equals the total work done.

Net work will be simpler to examine if we consider a one-
dimensional situation where a force is used to accelerate an
object in a direction parallel to its initial velocity. Such a
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situation occurs for the package on the roller belt conveyor
system shown in Figure 2.

Figure 2. A package on a roller belt is pushed horizontally through a
distance d.

The force of gravity and the normal force acting on the package
are perpendicular to the displacement and do no work.
Moreover, they are also equal in magnitude and opposite in
direction so they cancel in calculating the net force. The net
force arises solely from the horizontal applied force Fapp and
the horizontal friction force f. Thus, as expected, the net force
is parallel to the displacement, so that θ = 0° and cos θ = 1, and
the net work is given by

The effect of the net force Fnet is to accelerate the package
from v0 to v. The kinetic energy of the package increases,
indicating that the net work done on the system is positive.
(See Example 1.) By using Newton’s second law, and doing
some algebra, we can reach an interesting conclusion.
Substituting Fnet = ma from Newton’s second law gives

To get a relationship between net work and the speed given
to a system by the net force acting on it, we take d = x – x0

and use the equation studied in Chapter 2.5 Motion Equations
for Constant Acceleration in One Dimension for the change in
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speed over a distance d if the acceleration has the constant
value a; namely, v2 = v0

2+2ad (note that a appears in the
expression for the net work). Solving for acceleration gives

When a is substituted into the preceding

expression for Wnet, we obtain

The d cancels, and we rearrange this to obtain

This expression is called the work-energy theorem, and it
actually applies in general (even for forces that vary in direction
and magnitude), although we have derived it for the special
case of a constant force parallel to the displacement. The
theorem implies that the net work on a system equals the

change in the quantity This quantity is our first

example of a form of energy.

THE WORK-ENERGY THEOREM

The net work on a system equals the change in

the quantity
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The quantity in the work-energy theorem is defined

to be the translational kinetic energy (KE) of a mass m moving
at a speed v. (Translational kinetic energy is distinct from
rotational kinetic energy, which is considered later.) In
equation form, the translational kinetic energy,

is the energy associated with translational motion. Kinetic
energy is a form of energy associated with the motion of a
particle, single body, or system of objects moving together.

We are aware that it takes energy to get an object, like a
car or the package in Figure 2, up to speed, but it may be
a bit surprising that kinetic energy is proportional to speed
squared. This proportionality means, for example, that a car
traveling at 100 km/h has four times the kinetic energy it has
at 50 km/h, helping to explain why high-speed collisions are
so devastating. We will now consider a series of examples to
illustrate various aspects of work and energy.

Example 1: Calculating the Kinetic
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Energy of a Package

Suppose a 30.0-kg package on the roller belt
conveyor system in Figure 2 is moving at 0.500 m/s.
What is its kinetic energy?

Strategy

Because the mass m and speed v are given, the
kinetic energy can be calculated from its definition

as given in the equation

Solution

The kinetic energy is given by

Entering known values gives

which yields

Discussion

Note that the unit of kinetic energy is the joule,
the same as the unit of work, as mentioned when
work was first defined. It is also interesting that,
although this is a fairly massive package, its kinetic
energy is not large at this relatively low speed. This
fact is consistent with the observation that people
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can move packages like this without exhausting
themselves.

Example 2: Determining the Work
to Accelerate a Package

Suppose that you push on the 30.0-kg package in
Figure 2 with a constant force of 120 N through a
distance of 0.800 m, and that the opposing friction
force averages 5.00 N.

(a) Calculate the net work done on the package.
(b) Solve the same problem as in part (a), this time
by finding the work done by each force that
contributes to the net force.

Strategy and Concept for (a)

This is a motion in one dimension problem,
because the downward force (from the weight of
the package) and the normal force have equal
magnitude and opposite direction, so that they
cancel in calculating the net force, while the applied
force, friction, and the displacement are all
horizontal. (See Figure 2.) As expected, the net work
is the net force times distance.

Solution for (a)
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The net force is the push force minus friction, or
Fnet = 120 N – 5.00 N = 115 N. Thus the net work is

Discussion for (a)

This value is the net work done on the package.
The person actually does more work than this,
because friction opposes the motion. Friction does
negative work and removes some of the energy the
person expends and converts it to thermal energy.
The net work equals the sum of the work done by
each individual force.

Strategy and Concept for (b)

The forces acting on the package are gravity, the
normal force, the force of friction, and the applied
force. The normal force and force of gravity are each
perpendicular to the displacement, and therefore
do no work.

Solution for (b)

The applied force does work.

The friction force and displacement are in
opposite directions, so that θ = 180°, and the work
done by friction is
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So the amounts of work done by gravity, by the
normal force, by the applied force, and by friction
are, respectively,

The total work done as the sum of the work done
by each force is then seen to be

Discussion for (b)

The calculated total work Wtotal as the sum of the
work by each force agrees, as expected, with the
work Wnet done by the net force. The work done by
a collection of forces acting on an object can be
calculated by either approach.

Example 3: Determining Speed
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from Work and Energy

Find the speed of the package in Figure 2 at the
end of the push, using work and energy concepts.

Strategy

Here the work-energy theorem can be used,
because we have just calculated the net work, Wnet,

and the initial kinetic energy, These

calculations allow us to find the final kinetic energy,

and thus the final speed v.

Solution

The work-energy theorem in equation form is

Solving for gives

Thus,

Solving for the final speed as requested and
entering known values gives
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Discussion

Using work and energy, we not only arrive at an
answer, we see that the final kinetic energy is the
sum of the initial kinetic energy and the net work
done on the package. This means that the work
indeed adds to the energy of the package.

Example 4: Work and Energy Can
Reveal Distance, Too

How far does the package in Figure 2 coast after
the push, assuming friction remains constant? Use
work and energy considerations.

Strategy

We know that once the person stops pushing,
friction will bring the package to rest. In terms of
energy, friction does negative work until it has
removed all of the package’s kinetic energy. The
work done by friction is the force of friction times
the distance traveled times the cosine of the angle
between the friction force and displacement; hence,
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this gives us a way of finding the distance traveled
after the person stops pushing.

Solution

The normal force and force of gravity cancel in
calculating the net force. The horizontal friction
force is then the net force, and it acts opposite to
the displacement, so θ = 180°. To reduce the kinetic
energy of the package to zero, the work Wfr by
friction must be minus the kinetic energy that the
package started with plus what the package
accumulated due to the pushing. Thus Wfr = -95.75
J. Furthermore, Wfr = fd′ cos θ =-fd′, where d′ is the
distance it takes to stop. Thus,

and so

Discussion

This is a reasonable distance for a package to
coast on a relatively friction-free conveyor system.
Note that the work done by friction is negative (the
force is in the opposite direction of motion), so it
removes the kinetic energy.

Some of the examples in this section can be solved without
considering energy, but at the expense of missing out on
gaining insights about what work and energy are doing in
this situation. On the whole, solutions involving energy are
generally shorter and easier than those using kinematics and
dynamics alone.
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Section Summary

• The net work Wnet is the work done by the net force
acting on an object.

• Work done on an object transfers energy to the object.
• The translational kinetic energy of an object of mass m

moving at speed v is

• The work-energy theorem states that the net work Wnet

on a system changes its kinetic energy,

Conceptual Questions

1: The person in Figure 3 does work on the lawn
mower. Under what conditions would the mower gain
energy? Under what conditions would it lose energy?

Figure 3.
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2: Work done on a system puts energy into it. Work
done by a system removes energy from it. Give an
example for each statement.

3: When solving for speed in Example 3, we kept only
the positive root. Why?

Problems & Exercises

1: (a) How fast must a 3000-kg elephant move to have
the same kinetic energy as a 65.0-kg sprinter running
at 10.0 m/s? (b) Discuss how the larger energies needed
for the movement of larger animals would relate to
metabolic rates.

2: Boxing gloves are padded to lessen the force of a
blow. (a) Calculate the force exerted by a boxing glove
on an opponent’s face, if the glove and face compress
7.50 cm during a blow in which the 7.00-kg arm and
glove are brought to rest from an initial speed of 10.0
m/s. (b) Calculate the force exerted by an identical blow
in the gory old days when no gloves were used and the
knuckles and face would compress only 2.00 cm. (c)
Discuss the magnitude of the force with glove on. Does
it seem high enough to cause damage even though it
is lower than the force with no glove?

3: Using energy considerations, calculate the average
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force a 60.0-kg sprinter exerts backward on the track to
accelerate from 2.00 to 8.00 m/s in a distance of 25.0 m,
if he encounters a headwind that exerts an average
force of 30.0 N against him.

Glossary

net work
work done by the net force, or vector sum of all the forces,
acting on an object

work-energy theorem
the result, based on Newton’s laws, that the net work done
on an object is equal to its change in kinetic energy

kinetic energy
the energy an object has by reason of its motion, equal to

for the translational (i.e., non-rotational) motion

of an object of mass m moving at speed v

Solutions

Problems & Exercises

3: net force = 72 N so the person force = 72 + 30 = 102
N net force = change in kinetic energy = 1/2 m (v
final)2 – 1/2 m (v initial) 2
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53. 7.3 Gravitational
Potential Energy

Summary

• Explain gravitational potential energy in terms
of work done against gravity.

• Show that the gravitational potential energy of
an object of mass m at height h on Earth is given
by PEg = mgh.

• Show how knowledge of the potential energy
as a function of position can be used to simplify
calculations and explain physical phenomena.

Work Done Against Gravity

Climbing stairs and lifting objects is work in both the scientific
and everyday sense—it is work done against the gravitational
force. When there is work, there is a transformation of energy.
The work done against the gravitational force goes into an
important form of stored energy that we will explore in this
section.

Let us calculate the work done in lifting an object of mass
m through a height h, such as in Figure 1. If the object is lifted
straight up at constant speed, then the force needed to lift it
is equal to its weight mg. The work done on the mass is then
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W = Fd = mgh. We define this to be the gravitational potential
energy (PEg)put into (or gained by) the object-Earth system.
This energy is associated with the state of separation between
two objects that attract each other by the gravitational force.
For convenience, we refer to this as the PEg gained by the
object, recognizing that this is energy stored in the
gravitational field of Earth. Why do we use the word “system”?
Potential energy is a property of a system rather than of a
single object—due to its physical position. An object’s
gravitational potential is due to its position relative to the
surroundings within the Earth-object system. The force applied
to the object is an external force, from outside the system.
When it does positive work it increases the gravitational
potential energy of the system. Because gravitational potential
energy depends on relative position, we need a reference level
at which to set the potential energy equal to 0. We usually
choose this point to be Earth’s surface, but this point is
arbitrary; what is important is the difference in gravitational
potential energy, because this difference is what relates to the
work done. The difference in gravitational potential energy of
an object (in the Earth-object system) between two rungs of a
ladder will be the same for the first two rungs as for the last two
rungs.

Converting Between Potential Energy
and Kinetic Energy

Gravitational potential energy may be converted to other forms
of energy, such as kinetic energy. If we release the mass,
gravitational force will do an amount of work equal to mgh on
it, thereby increasing its kinetic energy by that same amount
(by the work-energy theorem). We will find it more useful to
consider just the conversion of PEg to KE without explicitly
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considering the intermediate step of work. (See Example 2.)
This shortcut makes it is easier to solve problems using energy
(if possible) rather than explicitly using forces.

Figure 1. (a) The work done to lift the weight is stored in the
mass-Earth system as gravitational potential energy. (b) As the
weight moves downward, this gravitational potential energy is
transferred to the cuckoo clock.

More precisely, we define the change in gravitational potential
energy ΔPEg to be

where, for simplicity, we denote the change in height by h
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rather than the usual Δh. Note that h is positive when the final
height is greater than the initial height, and vice versa. For
example, if a 0.500-kg mass hung from a cuckoo clock is raised
1.00 m, then its change in gravitational potential energy is

Note that the units of gravitational potential energy turn out to
be joules, the same as for work and other forms of energy. As
the clock runs, the mass is lowered. We can think of the mass as
gradually giving up its 4.90 J of gravitational potential energy,
without directly considering the force of gravity that does the
work.

Using Potential Energy to Simplify
Calculations

The equation ΔPEg = mgh applies for any path that has a
change in height of h, not just when the mass is lifted straight
up. (See Figure 2.) It is much easier to calculate mgh (a simple
multiplication) than it is to calculate the work done along a
complicated path. The idea of gravitational potential energy
has the double advantage that it is very broadly applicable and
it makes calculations easier. From now on, we will consider that
any change in vertical position h of a mass m is accompanied
by a change in gravitational potential energy mgh, and we will
avoid the equivalent but more difficult task of calculating work
done by or against the gravitational force.
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Figure 2. The change in
gravitational potential energy
(ΔPEg) between points A and B
is independent of the path.
ΔPEg=mgh for any path
between the two points. Gravity
is one of a small class of forces
where the work done by or
against the force depends only
on the starting and ending
points, not on the path between
them.
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Example 1: The Force to Stop
Falling

A 60.0-kg person jumps onto the floor from a
height of 3.00 m. If he lands stiffly (with his knee
joints compressing by 0.500 cm), calculate the force
on the knee joints.

Strategy

This person’s energy is brought to zero in this
situation by the work done on him by the floor as he
stops. The initial PEg is transformed into KE as he
falls. The work done by the floor reduces this kinetic
energy to zero.

Solution

The work done on the person by the floor as he
stops is given by

with a minus sign because the displacement
while stopping and the force from floor are in
opposite directions (cos θ = cos 180° = 1). The floor
removes energy from the system, so it does
negative work.

The kinetic energy the person has upon reaching
the floor is the amount of potential energy lost by
falling through height h:
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The distance d that the person’s knees bend is
much smaller than the height h of the fall, so the
additional change in gravitational potential energy
during the knee bend is ignored.

The work W done by the floor on the person stops
the person and brings the person’s kinetic energy to
zero:

Combining this equation with the expression for
W gives

Recalling that h is negative because the person
fell down, the force on the knee joints is given by

Discussion

Such a large force (500 times more than the
person’s weight) over the short impact time is
enough to break bones. A much better way to
cushion the shock is by bending the legs or rolling
on the ground, increasing the time over which the
force acts. A bending motion of 0.5 m this way yields
a force 100 times smaller than in the example. A
kangaroo’s hopping shows this method in action.
The kangaroo is the only large animal to use
hopping for locomotion, but the shock in hopping is
cushioned by the bending of its hind legs in each
jump.(See Figure 3.)
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Figure 3. The work done by the ground upon the kangaroo reduces its
kinetic energy to zero as it lands. However, by applying the force of
the ground on the hind legs over a longer distance, the impact on the
bones is reduced. (credit: Chris Samuel, Flickr)
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Example 2: Finding the Speed of a
Roller Coaster from its Height

(a) What is the final speed of the roller coaster
shown in Figure 4 if it starts from rest at the top of
the 20.0 m hill and work done by frictional forces is
negligible? (b) What is its final speed (again
assuming negligible friction) if its initial speed is
5.00 m/s?

Figure 4. The speed of a roller coaster increases as gravity
pulls it downhill and is greatest at its lowest point. Viewed
in terms of energy, the roller-coaster-Earth system’s
gravitational potential energy is converted to kinetic
energy. If work done by friction is negligible, all ΔPEg is
converted to KE.

Strategy

The roller coaster loses potential energy as it goes
downhill. We neglect friction, so that the remaining
force exerted by the track is the normal force, which
is perpendicular to the direction of motion and does
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no work. The net work on the roller coaster is then
done by gravity alone. The loss of gravitational
potential energy from moving downward through a
distance h equals the gain in kinetic energy. This
can be written in equation form as -ΔPEg = ΔKE.
Using the equations for PEg and KE, we can solve for
the final speed v, which is the desired quantity.

Solution for (a)

Here the initial kinetic energy is zero, so that

The equation for change in

potential energy states that ΔPEg = mgh. Since h is
negative in this case, we will rewrite this as ΔPEg =
–mg|h| to show the minus sign clearly. Thus,

becomes

Solving for v, we find that mass cancels and that

Substituting known values,

Solution for (b)

Again -ΔPEg = ΔKE. In this case there is initial
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kinetic energy, so

Thus,

Rearranging gives

This means that the final kinetic energy is the
sum of the initial kinetic energy and the
gravitational potential energy. Mass again cancels,
and

This equation is very similar to the kinematics

equation but it is more

general—the kinematics equation is valid only for
constant acceleration, whereas our equation above
is valid for any path regardless of whether the object
moves with a constant acceleration. Now,
substituting known values gives

Discussion and Implications

First, note that mass cancels. This is quite
consistent with observations made in Chapter 2.7
Falling Objects that all objects fall at the same rate if
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friction is negligible. Second, only the speed of the
roller coaster is considered; there is no information
about its direction at any point. This reveals another
general truth. When friction is negligible, the speed
of a falling body depends only on its initial speed
and height, and not on its mass or the path taken.
For example, the roller coaster will have the same
final speed whether it falls 20.0 m straight down or
takes a more complicated path like the one in the
figure. Third, and perhaps unexpectedly, the final
speed in part (b) is greater than in part (a), but by far
less than 5.00 m/s. Finally, note that speed can be
found at any height along the way by simply using
the appropriate value of h at the point of interest.

We have seen that work done by or against the gravitational
force depends only on the starting and ending points, and not
on the path between, allowing us to define the simplifying
concept of gravitational potential energy. We can do the same
thing for a few other forces, and we will see that this leads to a
formal definition of the law of conservation of energy.

MAKING CONNECTIONS:
TAKE-HOME INVESTIGATION—
CONVERTING POTENTIAL TO
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KINETIC ENERGY

One can study the conversion of gravitational
potential energy into kinetic energy in this
experiment. On a smooth, level surface, use a ruler
of the kind that has a groove running along its
length and a book to make an incline (see Figure 5).
Place a marble at the 10-cm position on the ruler
and let it roll down the ruler. When it hits the level
surface, measure the time it takes to roll one meter.
Now place the marble at the 20-cm and the 30-cm
positions and again measure the times it takes to
roll 1 m on the level surface. Find the velocity of the
marble on the level surface for all three positions.
Plot velocity squared versus the distance traveled by
the marble. What is the shape of each plot? If the
shape is a straight line, the plot shows that the
marble’s kinetic energy at the bottom is
proportional to its potential energy at the release
point.
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Figure 5. A marble rolls down a ruler, and its speed on the
level surface is measured.

Section Summary

• Work done against gravity in lifting an object becomes
potential energy of the object-Earth system.

• The change in gravitational potential energy, ΔPEg, is
ΔPEg = mgh, with h being the increase in height and g
the acceleration due to gravity.

• The gravitational potential energy of an object near Earth’s
surface is due to its position in the mass-Earth system.
Only differences in gravitational potential energy, ΔPEg,
have physical significance.

• As an object descends without friction, its gravitational
potential energy changes into kinetic energy
corresponding to increasing speed, so that ΔKE = -ΔPEg.
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Conceptual Questions

1: In Example 2, we calculated the final speed of a
roller coaster that descended 20 m in height and had
an initial speed of 5 m/s downhill. Suppose the roller
coaster had had an initial speed of 5 m/s uphill instead,
and it coasted uphill, stopped, and then rolled back
down to a final point 20 m below the start. We would
find in that case that it had the same final speed.
Explain in terms of conservation of energy.

2: Does the work you do on a book when you lift it
onto a shelf depend on the path taken? On the time
taken? On the height of the shelf? On the mass of the
book?

Problems & Exercises

1: In Example 2, we found that the speed of a roller
coaster that had descended 20.0 m was only slightly
greater when it had an initial speed of 5.00 m/s than
when it started from rest. This implies that ΔPE>>KEi.
Confirm this statement by taking the ratio of ΔPE to
KEi. (Note that mass cancels.)

2: In a downhill ski race, surprisingly, little advantage
is gained by getting a running start. (This is because
the initial kinetic energy is small compared with the
gain in gravitational potential energy on even small
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hills.) To demonstrate this, find the final speed and the
time taken for a skier who skies 70.0 m along a 30°
slope neglecting friction. Hint: you have to use
trigonometry to find the height of the hill first. (a)
Starting from rest. (b) Starting with an initial speed of
2.50 m/s. (c) Does the answer surprise you? Discuss why
it is still advantageous to get a running start in very
competitive events.

Glossary

gravitational potential energy
the energy an object has due to its position in a
gravitational field

Solutions

Problems & Exercises

2: h = 35.0 m = (70 m) sin 30.0o m g h = 1/ 2 m v2 so
v = 26.2 m/s
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54. 7.6 Conservation of
Energy

Summary

• Explain the law of the conservation of energy.
• Describe some of the many forms of energy.
• Define efficiency of an energy conversion

process as the fraction left as useful energy or
work, rather than being transformed, for example,
into thermal energy.

Law of Conservation of Energy

Energy, as we have noted, is conserved, making it one of the
most important physical quantities in nature. The law of
conservation of energy can be stated as follows:

Total energy is constant in any process. It may change in
form or be transferred from one system to another, but the
total remains the same.

We have explored some forms of energy and some ways
it can be transferred from one system to another. This
exploration led to the definition of two major types of
energy—mechanical energy (KE + PE) and energy transferred
via work done by nonconservative forces (Wnc). But energy
takes many other forms, manifesting itself in many different
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ways, and we need to be able to deal with all of these before we
can write an equation for the above general statement of the
conservation of energy.

Other Forms of Energy than
Mechanical Energy

At this point, we deal with all other forms of energy by lumping
them into a single group called other energy (OE). Then we
can state the conservation of energy in equation form as

All types of energy and work can be included in this very
general statement of conservation of energy. Kinetic energy is
KE, work done by a conservative force is represented by PE,
work done by nonconservative forces is Wnc, and all other
energies are included as OE. This equation applies to all
previous examples; in those situations OE was constant, and so
it subtracted out and was not directly considered.

MAKING CONNECTIONS:
USEFULNESS OF THE ENERGY
CONSERVATION PRINCIPLE

The fact that energy is conserved and has many
forms makes it very important. You will find that
energy is discussed in many contexts, because it is
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involved in all processes. It will also become
apparent that many situations are best understood
in terms of energy and that problems are often
most easily conceptualized and solved by
considering energy.

When does OE play a role? One example occurs when a person
eats. Food is oxidized with the release of carbon dioxide, water,
and energy. Some of this chemical energy is converted to
kinetic energy when the person moves, to potential energy
when the person changes altitude, and to thermal energy
(another form of OE).

Some of the Many Forms of Energy

What are some other forms of energy? You can probably name
a number of forms of energy not yet discussed. Many of these
will be covered in later chapters, but let us detail a few here.
Electrical energy is a common form that is converted to many
other forms and does work in a wide range of practical
situations. Fuels, such as gasoline and food, carry chemical
energy that can be transferred to a system through oxidation.
Chemical fuel can also produce electrical energy, such as in
batteries. Batteries can in turn produce light, which is a very
pure form of energy. Most energy sources on Earth are in fact
stored energy from the energy we receive from the Sun. We
sometimes refer to this as radiant energy, or electromagnetic
radiation, which includes visible light, infrared, and ultraviolet
radiation. Nuclear energy comes from processes that convert
measurable amounts of mass into energy. Nuclear energy is
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transformed into the energy of sunlight, into electrical energy
in power plants, and into the energy of the heat transfer and
blast in weapons. Atoms and molecules inside all objects are
in random motion. This internal mechanical energy from the
random motions is called thermal energy, because it is related
to the temperature of the object. These and all other forms of
energy can be converted into one another and can do work.

Table 1 gives the amount of energy stored, used, or released
from various objects and in various phenomena. The range of
energies and the variety of types and situations is impressive.

Efficiency

Even though energy is conserved in an energy conversion
process, the output of useful energy or work will be less than
the energy input. The efficiency Eff of an energy conversion
process is defined as

Table 2 lists some efficiencies of mechanical devices and
human activities.
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Activity/device Efficiency (%)1

Cycling and climbing 20

Swimming, surface 2

Swimming, submerged 4

Shoveling 3

Weightlifting 9

Steam engine 17

Gasoline engine 30

Diesel engine 35

Nuclear power plant 35

Coal power plant 42

Electric motor 98

Compact fluorescent light 20

Gas heater (residential) 90

Solar cell 10

Table 2. Efficiency of the Human Body and Mechanical Devices.

Section Summary

• The law of conservation of energy states that the total
energy is constant in any process. Energy may change in
form or be transferred from one system to another, but
the total remains the same.

• When all forms of energy are considered, conservation of
energy is written in equation form as KEi + PEi + Wnc +
OEi = KEf + PEf + OEf, where OE is all other forms of
energy besides mechanical energy.

• Commonly encountered forms of energy include electric
energy, chemical energy, radiant energy, nuclear energy,
and thermal energy.

• Energy is often utilized to do work, but it is not possible to
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convert all the energy of a system to work.
• The efficiency Eff of a machine or human is defined to be

where Wout is useful work output and

Ein is the energy consumed.

Conceptual Questions

1: Describe the energy transfers and transformations
for a javelin, starting from the point at which an athlete
picks up the javelin and ending when the javelin is
stuck into the ground after being thrown.

2: List the energy conversions that occur when riding
a bicycle.

Problems & Exercises

1: Using energy considerations and assuming
negligible air resistance, show that a rock thrown from
a bridge 20.0 m above water with an initial speed of 15.0
m/s strikes the water with a speed of 24.8 m/s
independent of the direction thrown.
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Footnotes

1. 1 Representative values

Glossary

law of conservation of energy
the general law that total energy is constant in any
process; energy may change in form or be transferred
from one system to another, but the total remains the
same

electrical energy
the energy carried by a flow of charge

chemical energy
the energy in a substance stored in the bonds between
atoms and molecules that can be released in a chemical
reaction

radiant energy
the energy carried by electromagnetic waves

nuclear energy
energy released by changes within atomic nuclei, such as
the fusion of two light nuclei or the fission of a heavy
nucleus

thermal energy
the energy within an object due to the random motion of
its atoms and molecules that accounts for the object’s
temperature

efficiency
a measure of the effectiveness of the input of energy to do
work; useful energy or work divided by the total input of
energy
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Solutions

Problems & Exercises

2: Equating and we obtain
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55. 7.7 Power

Summary

• Calculate power by calculating changes in
energy over time.

• Examine power consumption and calculations
of the cost of energy consumed.

What is Power?

Power—the word conjures up many images: a professional
football player muscling aside his opponent or a dragster
roaring away from the starting line.

These images of power have in common the rapid
performance of work, consistent with the scientific definition
of power (P) as the rate at which work is done.

POWER

Power is the rate at which work is done.
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The SI unit for power is the watt (W), where 1 watt
equals 1 joule/second (1 W = 1 J/s).

Because work is energy transfer, power is also the rate at which
energy is expended. A 60-W light bulb, for example, expends 60
J of energy per second. Great power means a large amount of
work or energy developed in a short time. For example, when a
powerful car accelerates rapidly, it does a large amount of work
and consumes a large amount of fuel in a short time.

Calculating Power from Energy

Example 1: Calculating the Power
to Climb Stairs

What is the power output for a 60.0-kg woman
who runs up a 3.00 m high flight of stairs in 3.50 s,
starting from rest but having a final speed of 2.00
m/s? (See Figure 2.)
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Figure 2. When this woman runs upstairs starting from
rest, she converts the chemical energy originally from food
into kinetic energy and gravitational potential energy. Her
power output depends on how fast she does this.

Strategy and Concept

The work going into mechanical energy is W = KE
+ PE. At the bottom of the stairs, we take both KE
and PEgas initially zero; thus,

where h is the vertical height of the stairs. Because
all terms are given, we can calculate W and then
divide it by time to get power.

Solution
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Substituting the expression for W into the
definition of power given in the previous equation, P
= W/t yields

Entering known values yields

Discussion

The woman does 1764 J of work to move up the
stairs compared with only 120 J to increase her
kinetic energy; thus, most of her power output is
required for climbing rather than accelerating.

It is impressive that this woman’s useful power output is
slightly less than 1 horsepower (1 hp = 746 W)! People can
generate more than a horsepower with their leg muscles for
short periods of time by rapidly converting available blood
sugar and oxygen into work output. (A horse can put out 1
hp for hours on end.) Once oxygen is depleted, power output
decreases and the person begins to breathe rapidly to obtain
oxygen to metabolize more food—this is known as the aerobic
stage of exercise. If the woman climbed the stairs slowly, then
her power output would be much less, although the amount of
work done would be the same.
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MAKING CONNECTIONS:
TAKE-HOME
INVESTIGATION—MEASURE YOUR
POWER RATING

Determine your own power rating by measuring
the time it takes you to climb a flight of stairs. We
will ignore the gain in kinetic energy, as the above
example showed that it was a small portion of the
energy gain. Don’t expect that your output will be
more than about 0.5 hp.

Section Summary

• Power is the rate at which work is done, or in equation
form, for the average power P for work W done over a time
t, P = W/t.

• The SI unit for power is the watt (W), where 1 W = 1 J/s.

Problems & Exercises

1: A person in good physical condition can put out 100
W of useful power for several hours at a stretch,
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perhaps by pedalling a mechanism that drives an
electric generator. Neglecting any problems of
generator efficiency and practical considerations such
as resting time: (a) How many people would it take to
run a 4.00-kW electric clothes dryer? (b) How many
people would it take to replace a large electric power
plant that generates 800 MW?

2: (a) What is the average useful power output of a
person who does 6.00 × 106 J of useful work in 8.00 h?
(b) Working at this rate, how long will it take this person
to lift 2000 kg of bricks 1.50 m to a platform? (Work
done to lift his body can be omitted because it is not
considered useful output here.)

Glossary

power
the rate at which work is done

watt
(W) SI unit of power, with 1 W = 1 J/s

kilowatt-hour
(kW • h) unit used primarily for electrical energy provided
by electric utility companies
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Solutions

Problems & Exercises

1: (a) 40 (b) 8 million

2: (a) 208 W (b) 141 s
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56. 7.8 Work, Energy,
and Power in Human
Physiology

Summary

• Explain the human body’s consumption of
energy when at rest vs. when engaged in
activities that do useful work.

• Calculate the conversion of chemical energy in
food into useful work.

Energy Conversion in Humans

Our own bodies, like all living organisms, are energy conversion
machines. Conservation of energy implies that the chemical
energy stored in food is converted into work, thermal energy,
and/or stored as chemical energy in fatty tissue. (See Figure 1.)
The fraction going into each form depends both on how much
we eat and on our level of physical activity. If we eat more than
is needed to do work and stay warm, the remainder goes into
body fat.
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Figure 1. Energy consumed by humans is
converted to work, thermal energy, and stored fat.
By far the largest fraction goes to thermal energy,
although the fraction varies depending on the
type of physical activity.

Power Consumed at Rest

The rate at which the body uses food energy to sustain life and
to do different activities is called the metabolic rate. The total
energy conversion rate of a person at rest is called the basal
metabolic rate (BMR) and is divided among various systems in
the body, as shown in Table 4. The largest fraction goes to the
liver and spleen, with the brain coming next. Of course, during
vigorous exercise, the energy consumption of the skeletal
muscles and heart increase markedly. About 75% of the calories
burned in a day go into these basic functions. The BMR is
a function of age, gender, total body weight, and amount of
muscle mass (which burns more calories than body fat).
Athletes have a greater BMR due to this last factor.
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Organ Power consumed
at rest (W)

Oxygen
consumption (mL/
min)

Percent
of BMR

Liver &
spleen 23 67 27

Brain 16 47 19

Skeletal
muscle 15 45 18

Kidney 9 26 10

Heart 6 17 7

Other 16 48 19

Totals 85 W 250 mL/min 100%

Table 4. Basal Metabolic Rates (BMR).

Energy consumption is directly proportional to oxygen
consumption because the digestive process is basically one of
oxidizing food. We can measure the energy people use during
various activities by measuring their oxygen use. (See Figure
2.) Approximately 20 kJ of energy are produced for each liter
of oxygen consumed, independent of the type of food. Table
5 shows energy and oxygen consumption rates (power
expended) for a variety of activities.

Power of Doing Useful Work

Work done by a person is sometimes called useful work, which
is work done on the outside world, such as lifting weights.
Useful work requires a force exerted through a distance on the
outside world, and so it excludes internal work, such as that
done by the heart when pumping blood. Useful work does
include that done in climbing stairs or accelerating to a full
run, because these are accomplished by exerting forces on the
outside world. Forces exerted by the body are nonconservative,

7.8 Work, Energy, and Power in Human Physiology | 529



so that they can change the mechanical energy (KE + PE) of
the system worked upon, and this is often the goal. A baseball
player throwing a ball, for example, increases both the ball’s
kinetic and potential energy.

If a person needs more energy than they consume, such
as when doing vigorous work, the body must draw upon the
chemical energy stored in fat. So exercise can be helpful in
losing fat. However, the amount of exercise needed to produce
a loss in fat, or to burn off extra calories consumed that day, can
be large, as Example 1 illustrates.

Example 1: Calculating Weight Loss
from Exercising

If a person who normally requires an average of
12,000 kJ (3000 kcal) of food energy per day
consumes 13,000 kJ per day, he will steadily gain
weight. How much bicycling per day is required to
work off this extra 1000 kJ?

Solution

Table 5 states that 400 W are used when cycling
at a moderate speed. The time required to work off
1000 kJ at this rate is then

Discussion

If this person uses more energy than he or she
consumes, the person’s body will obtain the needed
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energy by metabolizing body fat. If the person uses
13,000 kJ but consumes only 12,000 kJ, then the
amount of fat loss will be

assuming the energy content of fat to be 39 kJ/g.

Figure 2. A pulse oxymeter is an apparatus that
measures the amount of oxygen in blood. Oxymeters
can be used to determine a person’s metabolic rate,
which is the rate at which food energy is converted to
another form. Such measurements can indicate the
level of athletic conditioning as well as certain medical
problems. (credit: UusiAjaja, Wikimedia Commons)
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Activity
Energy
consumption in
watts

Oxygen consumption in
liters O2/min

Sleeping 83 0.24

Sitting at rest 120 0.34

Standing relaxed 125 0.36

Sitting in class 210 0.60

Walking (5 km/h) 280 0.80

Cycling (13–18
km/h) 400 1.14

Shivering 425 1.21

Playing tennis 440 1.26

Swimming
breaststroke 475 1.36

Ice skating (14.5
km/h) 545 1.56

Climbing stairs
(116/min) 685 1.96

Cycling (21 km/h) 700 2.00

Running
cross-country 740 2.12

Playing
basketball 800 2.28

Cycling,
professional
racer

1855 5.30

Sprinting 2415 6.90

Table 5. Energy and Oxygen Consumption Rates1 (Power).

All bodily functions, from thinking to lifting weights, require
energy. (See Figure 3.) The many small muscle actions
accompanying all quiet activity, from sleeping to head
scratching, ultimately become thermal energy, as do less
visible muscle actions by the heart, lungs, and digestive tract.
Shivering, in fact, is an involuntary response to low body
temperature that pits muscles against one another to produce
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thermal energy in the body (and do no work). The kidneys and
liver consume a surprising amount of energy, but the biggest
surprise of all it that a full 25% of all energy consumed by the
body is used to maintain electrical potentials in all living cells.
(Nerve cells use this electrical potential in nerve impulses.) This
bioelectrical energy ultimately becomes mostly thermal
energy, but some is utilized to power chemical processes such
as in the kidneys and liver, and in fat production.

Figure 3. This fMRI scan shows an increased
level of energy consumption in the vision
center of the brain. Here, the patient was
being asked to recognize faces. (credit: NIH via
Wikimedia Commons)

Section Summary

• The human body converts energy stored in food into work,
thermal energy, and/or chemical energy that is stored in
fatty tissue.

7.8 Work, Energy, and Power in Human Physiology | 533



• The rate at which the body uses food energy to sustain life
and to do different activities is called the metabolic rate,
and the corresponding rate when at rest is called the basal
metabolic rate (BMR)

• The energy included in the basal metabolic rate is divided
among various systems in the body, with the largest
fraction going to the liver and spleen, and the brain
coming next.

• About 75% of food calories are used to sustain basic body
functions included in the basal metabolic rate.

• The energy consumption of people during various
activities can be determined by measuring their oxygen
use, because the digestive process is basically one of
oxidizing food.

Conceptual Questions

1: Explain why it is easier to climb a mountain on a
zigzag path rather than one straight up the side. Is your
increase in gravitational potential energy the same in
both cases? Is your energy consumption the same in
both?

2: Do you do work on the outside world when you rub
your hands together to warm them? What is the
efficiency of this activity?

3: Shivering is an involuntary response to lowered
body temperature. What is the efficiency of the body
when shivering, and is this a desirable value?

4: Discuss the relative effectiveness of dieting and
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exercise in losing weight, noting that most athletic
activities consume food energy at a rate of 400 to 500
W, while a single cup of yogurt can contain 1360 kJ (325
kcal). Specifically, is it likely that exercise alone will be
sufficient to lose weight? You may wish to consider
that regular exercise may increase the metabolic rate,
whereas protracted dieting may reduce it.

Problems & Exercises

1: (a) How long can you rapidly climb stairs (116/min)
on the 93.0 kcal of energy in a 10.0-g pat of butter? (b)
How many flights is this if each flight has 16 stairs?

2: (a) What is the power output in watts and
horsepower of a 70.0-kg sprinter who accelerates from
rest to 10.0 m/s in 3.00 s? (b) Considering the amount of
power generated, do you think a well-trained athlete
could do this repetitively for long periods of time?

3: Calculate the power output in watts and
horsepower of a shot-putter who takes 1.20 s to
accelerate the 7.27-kg shot from rest to 14.0 m/s, while
raising it 0.800 m. (Do not include the power produced
to accelerate his body.)
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Figure 4. Shot putter at the Dornoch
Highland Gathering in 2007. (credit:
John Haslam, Flickr)

4: (a) What is the efficiency of an out-of-condition
professor who does 2.10 × 105 J of useful work while
metabolizing 500 kcal of food energy? (b) How many
food calories would a well-conditioned athlete
metabolize in doing the same work with an efficiency
of 20%?

5: Energy that is not utilized for work or heat transfer
is converted to the chemical energy of body fat
containing about 39 kJ/g. How many grams of fat will
you gain if you eat 10,000 kJ (about 2500 kcal) one day
and do nothing but sit relaxed for 16.0 h and sleep for
the other 8.00 h? Use data from Table 5 for the energy
consumption rates of these activities.

6: Using data from Table 5, calculate the daily energy
needs of a person who sleeps for 7.00 h, walks for 2.00
h, attends classes for 4.00 h, cycles for 2.00 h, sits
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relaxed for 3.00 h, and studies for 6.00 h. (Studying
consumes energy at the same rate as sitting in class.)

7: What is the efficiency of a subject on a treadmill
who puts out work at the rate of 100 W while
consuming oxygen at the rate of 2.00 L/min? (Hint: See
Table 5.)

8: Shoveling snow can be extremely taxing because
the arms have such a low efficiency in this activity.
Suppose a person shoveling a footpath metabolizes
food at the rate of 800 W. (a) What is her useful power
output? (b) How long will it take her to lift 3000 kg of
snow 1.20 m? (This could be the amount of heavy snow
on 20 m of footpath.) (c) How much waste heat transfer
in kilojoules will she generate in the process?

9: Very large forces are produced in joints when a
person jumps from some height to the ground. (a)
Calculate the magnitude of the force produced if an
80.0-kg person jumps from a 0.600–m-high ledge and
lands stiffly, compressing joint material 1.50 cm as a
result. (Be certain to include the weight of the person.)
(b) In practice the knees bend almost involuntarily to
help extend the distance over which you stop. Calculate
the magnitude of the force produced if the stopping
distance is 0.300 m. (c) Compare both forces with the
weight of the person.

10: Jogging on hard surfaces with insufficiently
padded shoes produces large forces in the feet and
legs. (a) Calculate the magnitude of the force needed
to stop the downward motion of a jogger’s leg, if his leg
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has a mass of 13.0 kg, a speed of 6.00 m/s, and stops in
a distance of 1.50 cm. (Be certain to include the weight
of the 75.0-kg jogger’s body.) (b) Compare this force
with the weight of the jogger.

11: (a) Calculate the energy in kJ used by a 55.0-kg
woman who does 50 deep knee bends in which her
center of mass is lowered and raised 0.400 m. (She
does work in both directions.) You may assume her
efficiency is 20%. (b) What is the average power
consumption rate in watts if she does this in 3.00 min?

12: Kanellos Kanellopoulos flew 119 km from Crete to
Santorini, Greece, on April 23, 1988, in the Daedalus 88,
an aircraft powered by a bicycle-type drive mechanism
(see Figure 5). His useful power output for the 234-min
trip was about 350 W. Using the efficiency for cycling
from Table 2, calculate the food energy in kilojoules he
metabolized during the flight.

538 | 7.8 Work, Energy, and Power in Human Physiology



Figure 5. The Daedalus 88 in flight. (credit: NASA photo
by Beasley)

13: The swimmer shown in Figure 6 exerts an average
horizontal backward force of 80.0 N with his arm during
each 1.80 m long stroke. (a) What is his work output in
each stroke? (b) Calculate the power output of his arms
if he does 120 strokes per minute.

7.8 Work, Energy, and Power in Human Physiology | 539



Figure 6.

14:Mountain climbers carry bottled oxygen when at
very high altitudes. (a) Assuming that a mountain
climber uses oxygen at twice the rate for climbing 116
stairs per minute (because of low air temperature and
winds), calculate how many liters of oxygen a climber
would need for 10.0 h of climbing. (These are liters at
sea level.) Note that only 40% of the inhaled oxygen is
utilized; the rest is exhaled. (b) How much useful work
does the climber do if he and his equipment have a
mass of 90.0 kg and he gains 1000 m of altitude? (c)
What is his efficiency for the 10.0-h climb?

15: The awe-inspiring Great Pyramid of Cheops was
built more than 4500 years ago. Its square base,
originally 230 m on a side, covered 13.1 acres, and it was
146 m high, with a mass of about 7 × 109 kg. (The
pyramid’s dimensions are slightly different today due to
quarrying and some sagging.) Historians estimate that
20,000 workers spent 20 years to construct it, working
12-hour days, 330 days per year. (a) Calculate the
gravitational potential energy stored in the pyramid,
given its center of mass is at one-fourth its height. (b)
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Only a fraction of the workers lifted blocks; most were
involved in support services such as building ramps
(see Figure 7), bringing food and water, and hauling
blocks to the site. Calculate the efficiency of the
workers who did the lifting, assuming there were 1000
of them and they consumed food energy at the rate of
300 kcal/h. What does your answer imply about how
much of their work went into block-lifting, versus how
much work went into friction and lifting and lowering
their own bodies? (c) Calculate the mass of food that
had to be supplied each day, assuming that the
average worker required 3600 kcal per day and that
their diet was 5% protein, 60% carbohydrate, and 35%
fat. (These proportions neglect the mass of bulk and
nondigestible materials consumed.)

Figure 7. Ancient pyramids were probably constructed
using ramps as simple machines. (credit: Franck
Monnier, Wikimedia Commons)
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16: (a) How long can you play tennis on the 800 kJ
(about 200 kcal) of energy in a candy bar? (b) Does this
seem like a long time? Discuss why exercise is
necessary but may not be sufficient to cause a person
to lose weight.

Footnotes

1. 1 for an average 76-kg male

Glossary

metabolic rate
the rate at which the body uses food energy to sustain life
and to do different activities

basal metabolic rate
the total energy conversion rate of a person at rest

useful work
work done on an external system

Solutions

Problems & Exercises

1: (a) 9.5 minutes (b) 69 flights of stairs

3: 641 W , 0.860 hp
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5: 31 g

7: 14.3%

9: (a) (b) (c)

Ratio of net force to weight of person is 41.0 in part (a);
3.00 in part (b)

11: (a)108 kJ b) 559 W

13: (a) 144 J b) 288 W

15: (a) (b) $\boldsymbol{2.52 \%}$

(c) (14 metric tons)
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PART VIII

CHAPTER 8: ANGULAR
KINETICS

Chapter Objectives

After this chapter, you will be able to:

• State the first condition of equilibrium.
• Explain the difference between static

equilibrium and dynamic equilibrium.
• State the second condition that is necessary to

achieve equilibrium.
• Explain torque and the factors on which it

depends.
• Describe the role of torque in rotational

mechanics
• Calculate the mechanical advantage.
• Explain the forces exerted by muscles.
• State how a bad posture causes back strain.
• Discuss the benefits of skeletal muscles

attached close to joints.
• Discuss various complexities in the real system

of muscles, bones, and joints.
• Calculate angular acceleration of an object.
• Observe the link between linear and angular

acceleration.
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• Observe the kinematics of rotational motion.
• Understand the relationship between force,

mass and acceleration.
• Study the turning effect of force.
• Study the analogy between force and torque,

mass and moment of inertia, and linear
acceleration and angular acceleration.
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57. 8.0 Introduction

What might desks, bridges, buildings, trees, and mountains
have in common—at least in the eyes of a physicist? The
answer is that they are ordinarily motionless relative to the
Earth. Furthermore, their acceleration is zero because they
remain motionless. That means they also have something in
common with a car moving at a constant velocity, because
anything with a constant velocity also has an acceleration of
zero. Now, the important part—Newton’s second law states

that net and so the net external force is zero for

all stationary objects and for all objects moving at constant
velocity. There are forces acting, but they are balanced. That is,
they are in equilibrium.

STATICS

Statics is the study of forces in equilibrium, a large
group of situations that makes up a special case of
Newton’s second law. We have already considered a
few such situations; in this chapter, we cover the
topic more thoroughly, including consideration of
such possible effects as the rotation and
deformation of an object by the forces acting on it.

How can we guarantee that a body is in equilibrium and what
can we learn from systems that are in equilibrium? There are
actually two conditions that must be satisfied to achieve

8.0 Introduction | 547



equilibrium. These conditions are the topics of the first two
sections of this chapter.
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58. 8.1 The First
Condition for
Equilibrium

Summary

• State the first condition of equilibrium.
• Explain static equilibrium.
• Explain dynamic equilibrium.

The first condition necessary to achieve equilibrium is the one
already mentioned: the net external force on the system must
be zero. Expressed as an equation, this is simply

net force = 0 N

Note that if net F is zero, then the net external force in any
direction is zero. For example, the net external forces along the
typical x– and y-axes are zero. This is written as

Figure 1 and Figure 2 illustrate situations where net F = 0 for
both static equilibrium (motionless), and dynamic equilibrium
(constant velocity).
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Figure 1. This motionless person is in
static equilibrium. The forces acting on
him add up to zero. Both forces are
vertical in this case.

Figure 2. This car is in dynamic equilibrium because it is moving at
constant velocity. There are horizontal and vertical forces, but the net
external force in any direction is zero. The applied forceFapp between
the tires and the road is balanced by air friction, and the weight of
the car is supported by the normal forces, here shown to be equal for
all four tires.

However, it is not sufficient for the net external force of a
system to be zero for a system to be in equilibrium. Consider
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the two situations illustrated in Figure 3 and Figure 4 where
forces are applied to an ice hockey stick lying flat on ice. The
net external force is zero in both situations shown in the figure;
but in one case, equilibrium is achieved, whereas in the other,
it is not. In Figure 3, the ice hockey stick remains motionless.
But in Figure 4, with the same forces applied in different places,
the stick experiences accelerated rotation. Therefore, we know
that the point at which a force is applied is another factor in
determining whether or not equilibrium is achieved. This will
be explored further in the next section.

Figure 3. An ice hockey stick lying flat on
ice with two equal and opposite
horizontal forces applied to it. Friction is
negligible, and the gravitational force is
balanced by the support of the ice (a
normal force). Thus, net F = 0. Equilibrium
is achieved, which is static equilibrium in
this case.

8.1 The First Condition for Equilibrium | 551



Figure 4. The same forces are applied at other
points and the stick rotates—in fact, it experiences
an accelerated rotation. Here net F = 0 but the
system is not at equilibrium. Hence, the net F = 0 is
a necessary—but not sufficient—condition for
achieving equilibrium.

PHET EXPLORATIONS: TORQUE

Investigate how torque causes an object to rotate.
Discover the relationships between angular
acceleration, moment of inertia, angular
momentum and torque.
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Figure 5. Torque

Section Summary

• Statics is the study of forces in equilibrium.
• Two conditions must be met to achieve equilibrium, which

is defined to be motion without linear or rotational
acceleration.

• The first condition necessary to achieve equilibrium is that
the net external force on the system must be zero, so that
net F = 0.

Conceptual Questions

1: What can you say about the velocity of a moving
body that is in dynamic equilibrium? Draw a sketch of
such a body using clearly labeled arrows to represent
all external forces on the body.
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2: Under what conditions can a rotating body be in
equilibrium? Give an example.

Glossary

static equilibrium
a state of equilibrium in which the net external force and
torque acting on a system is zero

dynamic equilibrium
a state of equilibrium in which the net external force and
torque on a system moving with constant velocity are zero
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59. 8.2 The Second
Condition for
Equilibrium

Summary

• State the second condition that is necessary to
achieve equilibrium.

• Explain torque and the factors on which it
depends.

• Describe the role of torque in rotational
mechanics

TORQUE

The second condition necessary to achieve
equilibrium involves avoiding accelerated rotation
(maintaining a constant angular velocity. A rotating
body or system can be in equilibrium if its rate of
rotation is constant and remains unchanged by the
forces acting on it. To understand what factors affect
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rotation, let us think about what happens when you
open an ordinary door by rotating it on its hinges.

Several familiar factors determine how effective you are in
opening the door. See Figure 1. First of all, the larger the force,
the more effective it is in opening the door—obviously, the
harder you push, the more rapidly the door opens. Also, the
point at which you push is crucial. If you apply your force too
close to the hinges, the door will open slowly, if at all. Most
people have been embarrassed by making this mistake and
bumping up against a door when it did not open as quickly
as expected. Finally, the direction in which you push is also
important. The most effective direction is perpendicular to the
door—we push in this direction almost instinctively.
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Figure 1. Torque is the turning or twisting effectiveness of a force,
illustrated here for door rotation on its hinges (as viewed from
overhead). Torque has both magnitude and direction. (a)
Counterclockwise torque is produced by this force, which means that
the door will rotate in a counterclockwise due to F. Note that r⊥ is the
perpendicular distance of the pivot from the line of action of the
force. (b) A smaller counterclockwise torque is produced by a smaller
force F′ acting at the same distance from the hinges (the pivot point).
(c) The same force as in (a) produces a smaller counterclockwise
torque when applied at a smaller distance from the hinges. (d) The
same force as in (a), but acting in the opposite direction, produces a
clockwise torque. (e) A smaller counterclockwise torque is produced
by the same magnitude force acting at the same point but in a
different direction. Here, θ is less than 90º. (f) Torque is zero here since
the force just pulls on the hinges, producing no rotation. In this case,
θ = 0º.

The magnitude, direction, and point of application of the force
are incorporated into the definition of the physical quantity
called torque. Torque is the rotational equivalent of a force.
It is a measure of the effectiveness of a force in changing or
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accelerating a rotation (changing the angular velocity over a
period of time). In equation form, the magnitude of torque is
defined to be

where τ (the Greek letter tau) is the symbol for torque, r is the
distance from the pivot point to the point where the force is
applied, F is the magnitude of the force, and θ is the angle
between the force and the vector directed from the point of
application to the pivot point, as seen in Figure 1 and Figure
2. An alternative expression for torque is given in terms of the
perpendicular lever arm r⊥ as shown in Figure 1 and Figure 2,
which is defined as

so that
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Figure 2. A force applied to an object can produce a torque,
which depends on the location of the pivot point. (a) The three
factors r, F, and θ for pivot point A on a body are shown here—r
is the distance from the chosen pivot point to the point where
the force F is applied, and θ is the angle between F and the
vector directed from the point of application to the pivot point. If
the object can rotate around point A, it will rotate
counterclockwise. This means that torque is counterclockwise
relative to pivot A. (b) In this case, point B is the pivot point. The
torque from the applied force will cause a clockwise rotation
around point B, and so it is a clockwise torque relative to B.

The perpendicular lever arm r⊥ is the shortest distance from
the pivot point to the line along which $\vec{\textbf{F}}$ acts;
it is shown as a dashed line in Figure 1 and Figure 2. Note that
the line segment that defines the distance r⊥ is perpendicular
to $\vec{\textbf{F}}$, as its name implies. It is sometimes easier
to find or visualize r⊥ than to find both r and θ. In such cases, it
may be more convenient to use τ = r⊥F rather than τ = rF sin θ
for torque, but both are equally valid.

The SI unit of torque is newtons times meters, usually written
as N⋅m. For example, if you push perpendicular to the door
with a force of 40 N at a distance of 0.800 m from the hinges,
you exert a torque of 32 N⋅m (0.800 m × 40 N × sin 90°) relative
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to the hinges. If you reduce the force to 20 N, the torque is
reduced to 16 N⋅m, and so on.

The torque is always calculated with reference to some
chosen pivot point. For the same applied force, a different
choice for the location of the pivot will give you a different value
for the torque, since both r and θ depend on the location of
the pivot. Any point in any object can be chosen to calculate
the torque about that point. The object may not actually pivot
about the chosen “pivot point.”

Note that for rotation in a plane, torque has two possible
directions. Torque is either clockwise or counterclockwise
relative to the chosen pivot point, as illustrated for points B and
A, respectively, in Figure 2. If the object can rotate about point
A, it will rotate counterclockwise, which means that the torque
for the force is shown as counterclockwise relative to A. But
if the object can rotate about point B, it will rotate clockwise,
which means the torque for the force shown is clockwise
relative to B. Also, the magnitude of the torque is greater when
the lever arm is longer.

Now, the second condition necessary to achieve equilibrium
is that the net external torque on a system must be zero. An
external torque is one that is created by an external force. You
can choose the point around which the torque is calculated.
The point can be the physical pivot point of a system or any
other point in space—but it must be the same point for all
torques. If the second condition (net external torque on a
system is zero) is satisfied for one choice of pivot point, it will
also hold true for any other choice of pivot point in or out of
the system of interest. (This is true only in an inertial frame
of reference.) The second condition necessary to achieve
equilibrium is stated in equation form as

where net means total. Torques, which are in opposite
directions are assigned opposite signs. A common convention
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is to call counterclockwise (ccw) torques positive and clockwise
(cw) torques negative.

When two children balance a seesaw as shown in Figure 3,
they satisfy the two conditions for equilibrium. Most people
have perfect intuition about seesaws, knowing that the lighter
child must sit farther from the pivot and that a heavier child
can keep a lighter one off the ground indefinitely.

Figure 3. Two children balancing a seesaw satisfy both
conditions for equilibrium. The lighter child sits farther
from the pivot to create a torque equal in magnitude
to that of the heavier child.

You can explore the PhET simulation called Balancing Act.
https://phet.colorado.edu/en/simulation/balancing-act
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Example 1: She Saw Torques On A
Seesaw

The two children shown in Figure 3 are balanced
on a seesaw of negligible mass. (This assumption is
made to keep the example simple—more involved
examples will follow.) The first child has a mass of
26.0 kg and sits 1.60 m from the pivot.(a) If the
second child has a mass of 32.0 kg, how far is she
from the pivot? (b) What is Fp, the supporting force
exerted by the pivot?

Strategy

Both conditions for equilibrium must be satisfied.
In part (a), we are asked for a distance; thus, the
second condition (regarding torques) must be used,
since the first (regarding only forces) has no
distances in it. To apply the second condition for
equilibrium, we first identify the system of interest
to be the seesaw plus the two children. We take the
supporting pivot to be the point about which the
torques are calculated. We then identify all external
forces acting on the system.

Solution (a)

The three external forces acting on the system are
the weights of the two children and the supporting
force of the pivot. Let us examine the torque
produced by each. Torque is defined to be
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Here θ = 90°, so that sin θ = 1 for all three forces.
That means r⊥ = r for all three. The torques exerted
by the three forces are first,

second,

and third,

Note that a minus sign has been inserted into the
second equation because this torque is clockwise
and is therefore negative by convention. Since Fp

acts directly on the pivot point, the distance rp is
zero. A force acting on the pivot cannot cause a
rotation, just as pushing directly on the hinges of a
door will not cause it to rotate. Now, the second
condition for equilibrium is that the sum of the
torques on both children is zero. Therefore

or

Weight is mass times the acceleration due to
gravity. Entering mg for w, we get

Solve this for the unknown r2:
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The quantities on the right side of the equation
are known; thus, r2 is

As expected, the heavier child must sit closer to
the pivot (1.30 m versus 1.60 m) to balance the
seesaw.

Solution (b)

This part asks for a force Fp. The easiest way to
find it is to use the first condition for equilibrium,
which is

The forces are all vertical, so that we are dealing
with a one-dimensional problem along the vertical
axis; hence, the condition can be written as

where we again call the vertical axis the y-axis.
Choosing upward to be the positive direction, and
using plus and minus signs to indicate the
directions of the forces, we see that

This equation yields what might have been
guessed at the beginning:

So, the pivot supplies a supporting force equal to
the total weight of the system:
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Entering known values gives

Discussion

The two results make intuitive sense. The heavier
child sits closer to the pivot. The pivot supports the
weight of the two children. Part (b) can also be
solved using the second condition for equilibrium,
since both distances are known, but only if the pivot
point is chosen to be somewhere other than the
location of the seesaw’s actual pivot!

Several aspects of the preceding example have broad
implications. First, the choice of the pivot as the point around
which torques are calculated simplified the problem. Since Fp

is exerted on the pivot point, its lever arm is zero. Hence, the
torque exerted by the supporting force Fp is zero relative to
that pivot point. The second condition for equilibrium holds for
any choice of pivot point, and so we choose the pivot point to
simplify the solution of the problem.

Second, the acceleration due to gravity canceled in this
problem, and we were left with a ratio of masses. This will not
always be the case. Always enter the correct forces—do not
jump ahead to enter some ratio of masses.

Third, the weight of each child is distributed over an area of
the seesaw, yet we treated the weights as if each force were
exerted at a single point. This is not an approximation—the
distances r1 and r2 are the distances to points directly below
the center of gravity of each child. As we shall see in the next
section, the mass and weight of a system can act as if they are
located at a single point.
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Finally, note that the concept of torque has an importance
beyond static equilibrium. Torque plays the same role in
rotational motion that force plays in linear motion. We will
examine this in the next chapter.

Section Summary

• The second condition assures those torques are also
balanced. Torque is the rotational equivalent of a force in
producing a rotation and is defined to be

where τ is torque, r is the distance from the pivot point to
the point where the force is applied, F is the magnitude
of the force, and θ is the angle between F and the vector
directed from the point where the force acts to the pivot
point. The perpendicular lever arm r⊥ is defined to be

so that

• The perpendicular lever arm r⊥ is the shortest distance
from the pivot point to the line along which F acts. The SI
unit for torque is newton-meter (N⋅m). The second
condition necessary to achieve equilibrium is that the net
external torque on a system must be zero:

By convention, counterclockwise torques are positive, and
clockwise torques are negative.
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Conceptual Questions

1: What three factors affect the torque created by a
force relative to a specific pivot point?

Problems & Exercises

1: (a) When opening a door, you push on it
perpendicularly with a force of 55.0 N at a distance of
0.850m from the hinges. What torque are you exerting
relative to the hinges? (b) Does it matter if you push at
the same height as the hinges?

2: When tightening a bolt, you push perpendicularly
on a wrench with a force of 165 N at a distance of 0.140
m from the center of the bolt. (a) How much torque are
you exerting in newton × meters (relative to the center
of the bolt)? (b) Convert this torque to footpounds.

3: Two children push on opposite sides of a door
during play. Both push horizontally and perpendicular
to the door. One child pushes with a force of 17.5 N at a
distance of 0.600 m from the hinges, and the second
child pushes at a distance of 0.450 m. What force must
the second child exert to keep the door from moving?
Assume friction is negligible.

4: Use the second condition for equilibrium (net τ =
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0) to calculate Fp in Example 1, employing any data
given or solved for in part (a) of the example.

5: Repeat the seesaw problem in Example 1 with the
center of mass of the seesaw 0.160 m to the left of the
pivot (on the side of the lighter child) and assuming a
mass of 12.0 kg for the seesaw. The other data given in
the example remain unchanged. Explicitly show how
you follow the steps in the Problem-Solving Strategy
for static equilibrium.

Glossary

torque
turning or twisting effectiveness of a force

perpendicular lever arm
the shortest distance from the pivot point to the line along
which FF lies

SI units of torque
newton times meters, usually written as N·m

center of gravity
the point where the total weight of the body is assumed to
be concentrated

Solutions

Problems & Exercises
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1: (a) (b) It does not matter at what
height you push. The torque depends on only the
magnitude of the force applied and the perpendicular
distance of the force’s application from the hinges.
(Children don’t have a tougher time opening a door
because they push lower than adults, they have a
tougher time because they don’t push far enough from
the hinges.)

3: $\boldsymbol{23.3\textbf{ N}}$

5: Given:

a) Since children are balancing:

So, solving for gives:

b) Since the children are not moving:

So that
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60. 8.3 Stability

Summary

• State the types of equilibrium.
• Describe stable and unstable equilibriums.
• Describe neutral equilibrium.

It is one thing to have a system in equilibrium; it is quite
another for it to be stable. The toy doll perched on the man’s
hand in Figure 1, for example, is not in stable equilibrium. There
are three types of equilibrium: stable, unstable, and neutral.
Figures throughout this module illustrate various examples.

Figure 1 presents a balanced system, such as the toy doll on
the man’s hand, which has its center of gravity (cg) directly
over the pivot, so that the torque of the total weight is zero.
This is equivalent to having the torques of the individual parts
balanced about the pivot point, in this case the hand. The cgs
of the arms, legs, head, and torso are labeled with smaller type.
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Figure 1. A man balances a toy doll
on one hand.

A system is said to be in stable equilibrium if, when displaced
from equilibrium, it experiences a net force or torque in a
direction opposite to the direction of the displacement. For
example, a marble at the bottom of a bowl will experience a
restoring force when displaced from its equilibrium position.
This force moves it back toward the equilibrium position. Most
systems are in stable equilibrium, especially for small
displacements. For another example of stable equilibrium, see
the pencil in Figure 2.
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Figure 2. This pencil is in the
condition of equilibrium. The net
force on the pencil is zero and the
total torque about any pivot is zero.

A system is in unstable equilibrium if, when displaced, it
experiences a net force or torque in the same direction as
the displacement from equilibrium. A system in unstable
equilibrium accelerates away from its equilibrium position if
displaced even slightly. An obvious example is a ball resting
on top of a hill. Once displaced, it accelerates away from the
crest. See the next several figures for examples of unstable
equilibrium.
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Figure 3. If the pencil is displaced
slightly to the side
(counterclockwise), it is no longer in
equilibrium. Its weight produces a
clockwise torque that returns the
pencil to its equilibrium position.

Figure 4. If the pencil is displaced
too far, the torque caused by its
weight changes direction to
counterclockwise and causes the
displacement to increase.
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Figure 5. This figure shows unstable
equilibrium, although both
conditions for equilibrium are
satisfied.
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Figure 6. If the pencil is displaced
even slightly, a torque is created by
its weight that is in the same
direction as the displacement,
causing the displacement to
increase.

A system is in neutral equilibrium if its equilibrium is
independent of displacements from its original position.

When we consider how far a system in stable equilibrium can
be displaced before it becomes unstable, we find that some
systems in stable equilibrium are more stable than others. The
critical point is reached when the cg is no longer above the
base of support. Additionally, since the cg of a person’s body
is above the pivots in the hips, displacements must be quickly
controlled. This control is a central nervous system function
that is developed when we learn to hold our bodies erect as
infants. For increased stability while standing, the feet should
be spread apart, giving a larger base of support. Stability is also
increased by lowering one’s center of gravity by bending the
knees, as when a football player prepares to receive a ball or
braces themselves for a tackle. A cane, a crutch, or a walker
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increases the stability of the user, even more as the base of
support widens. Usually, the cg of a female is lower (closer to
the ground) than a male. Young children have their center of
gravity between their shoulders, which increases the challenge
of learning to walk.

Figure 7. (a) The center of gravity of an adult is above the hip joints
(one of the main pivots in the body) and lies between two
narrowly-separated feet. Like a pencil standing on its eraser, this
person is in stable equilibrium in relation to sideways displacements,
but relatively small displacements take his cg outside the base of
support and make him unstable. Humans are less stable relative to
forward and backward displacements because the feet are not very
long. Muscles are used extensively to balance the body in the
front-to-back direction. (b) While bending in the manner shown,
stability is increased by lowering the center of gravity. Stability is also
increased if the base is expanded by placing the feet farther apart.

Animals such as chickens have easier systems to control. Figure
8 shows that the cg of a chicken lies below its hip joints and
between its widely separated and broad feet. Even relatively
large displacements of the chicken’s cg are stable and result
in restoring forces and torques that return the cg to its
equilibrium position with little effort on the chicken’s part. Not
all birds are like chickens, of course. Some birds, such as the
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flamingo, have balance systems that are almost as
sophisticated as that of humans.

Figure 8 shows that the cg of a chicken is below the hip
joints and lies above a broad base of support formed by widely-
separated and large feet. Hence, the chicken is in very stable
equilibrium, since a relatively large displacement is needed to
render it unstable. The body of the chicken is supported from
above by the hips and acts as a pendulum between the hips.
Therefore, the chicken is stable for front-to-back displacements
as well as for side-to-side displacements.

Figure 8. The center of gravity of a
chicken is below the hip joints. The
chicken is in stable equilibrium. The
body of the chicken is supported
from above by the hips and acts as a
pendulum between them.

The basic conditions for equilibrium are the same for all types
of forces. The net external force must be zero, and the net
torque must also be zero.
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TAKE-HOME EXPERIMENT

Stand straight with your heels, back, and head
against a wall. Bend forward from your waist,
keeping your heels and bottom against the wall, to
touch your toes. Can you do this without toppling
over? Explain why and what you need to do to be
able to touch your toes without losing your balance.
Is it easier for a woman to do this?

Section Summary

• A system is said to be in stable equilibrium if, when
displaced from equilibrium, it experiences a net force or
torque in a direction opposite the direction of the
displacement.

• A system is in unstable equilibrium if, when displaced
from equilibrium, it experiences a net force or torque in
the same direction as the displacement from equilibrium.

• A system is in neutral equilibrium if its equilibrium is
independent of displacements from its original position.
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Problems & Exercises

1: Suppose a horse leans against a wall as in Figure 9.
Calculate the force exerted on the wall assuming that
force is horizontal while using the data in the
schematic representation of the situation. Note that
the force exerted on the wall is equal in magnitude and
opposite in direction to the force exerted on the horse,
keeping it in equilibrium. The total mass of the horse
and rider is 500 kg. Take the data to be accurate to
three digits.

Figure 9.

2: Two children of mass 20.0 kg and 30.0 kg sit
balanced on a seesaw with the pivot point located at

8.3 Stability | 579



the center of the seesaw. If the children are separated
by a distance of 3.00 m, at what distance from the pivot
point is the small child sitting in order to maintain the
balance?

3: A person carries a plank of wood 2.00 m long with
one hand pushing down on it at one end with a force F1

and the other hand holding it up at .500 m from the
end of the plank with force F2. If the plank has a mass
of 20.0 kg and its center of gravity is at the middle of
the plank, what are the magnitudes of the forces F1 and
F2?

4: A gymnast is attempting to perform splits. From
the information given in Figure 10, calculate the
magnitude and direction of the force exerted on each
foot by the floor.
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Figure 10. A gymnast performs full split. The center of
gravity and the various distances from it are shown.

Glossary

neutral equilibrium
a state of equilibrium that is independent of a system’s
displacements from its original position

stable equilibrium
a system, when displaced, experiences a net force or
torque in a direction opposite to the direction of the
displacement

unstable equilibrium
a system, when displaced, experiences a net force or
torque in the same direction as the displacement from
equilibrium
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Solutions

Problems & Exercises

1:

4: directly upwards
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61. 8.4 Applications of
Statics, Including
Problem-Solving
Strategies

Summary

• Discuss the applications of Statics in real life.
• State and discuss various problem-solving

strategies in Statics.

Statics can be applied to a variety of situations, for example,
bad posture leading to back strain. We begin with a discussion
of problem-solving strategies specifically used for statics.

PROBLEM-SOLVING STRATEGY:
STATIC EQUILIBRIUM SITUATIONS

1. The first step is to determine whether or not
the system is in static equilibrium. This
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condition is always the case when the
acceleration of the system is zero and
accelerated rotation does not occur.

2. It is particularly important to draw a free
body diagram for the system of interest.
Carefully label all forces, and note their relative
magnitudes, directions, and points of
application whenever these are known.

3. Solve the problem by applying either or both
of the conditions for equilibrium (represented
by the equations net F = 0 and net τ =0,
depending on the list of known and unknown
factors. If the second condition is involved,
choose the pivot point to simplify the solution.
Any pivot point can be chosen, but the most
useful ones cause torques by unknown forces
to be zero. (Torque is zero if the force is applied
at the pivot (then r = 0), or along a line through
the pivot point (then θ = 0). Always choose a
convenient coordinate system for projecting
forces.

4. Check the solution to see if it is reasonable
by examining the magnitude, direction, and
units of the answer. The importance of this last
step never diminishes, although in unfamiliar
applications, it is usually more difficult to
judge reasonableness. These judgments
become progressively easier with experience.

Now let us apply this problem-solving strategy for the pole
vaulter shown in the three figures below. The pole is uniform
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and has a mass of 5.00 kg. In Figure 1, the pole’s cg lies halfway
between the vaulter’s hands. It seems reasonable that the force
exerted by each hand is equal to half the weight of the pole, or
24.5 N. This obviously satisfies the first condition for equilibrium
(net F = 0). The second condition (net τ =0) is also satisfied, as
we can see by choosing the cg to be the pivot point. The weight
exerts no torque about a pivot point located at the cg, since
it is applied at that point and its lever arm is zero. The equal
forces exerted by the hands are equidistant from the chosen
pivot, and so they exert equal and opposite torques. Similar
arguments hold for other systems where supporting forces are
exerted symmetrically about the cg. For example, the four legs
of a uniform table each support one-fourth of its weight.

In Figure 1, a pole vaulter holding a pole with its cg halfway
between his hands is shown. Each hand exerts a force equal to
half the weight of the pole, FR = FL = w/2. (b) The pole vaulter
moves the pole to his left, and the forces that the hands exert
are no longer equal. See Figure 1. If the pole is held with its cg
to the left of the person, then he must push down with his right
hand and up with his left. The forces he exerts are larger here
because they are in opposite directions and the cg is at a long
distance from either hand.

Similar observations can be made using a meter stick held at
different locations along its length.
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Figure 1. A pole vaulter holds a pole horizontally with
both hands.

Figure 2. A pole vaulter is holding a pole horizontally
with both hands. The center of gravity is near his right
hand.
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Figure 3. A pole vaulter is holding a pole horizontally
with both hands. The center of gravity is to the left side
of the vaulter.

If the pole vaulter holds the pole as shown in Figure 2, the
situation is not as simple. The total force he exerts is still equal
to the weight of the pole, but it is not evenly divided between
his hands. (If FL = FR, then the torques about the cg would
not be equal since the lever arms are different.) Logically, the
right hand should support more weight, since it is closer to the
cg. In fact, if the right hand is moved directly under the cg, it
will support all the weight. This situation is exactly analogous
to two people carrying a load; the one closer to the cg carries
more of its weight. Finding the forces FL and FR is
straightforward, as the next example shows.

If the pole vaulter holds the pole from near the end of the
pole (Figure 3), the direction of the force applied by the right
hand of the vaulter reverses its direction.
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Example 1: What Force Is Needed
to Support a Weight Held Near Its
CG?

For the situation shown in Figure 2, calculate: (a)
FR, the force exerted by the right hand, and (b) FL,
the force exerted by the left hand. The hands are
0.900 m apart, and the cg of the pole is 0.600 m
from the left hand.

Strategy

Figure 2 includes a free body diagram for the pole,
the system of interest. There is not enough
information to use the first condition for equilibrium
(net F = 0), since two of the three forces are
unknown and the hand forces cannot be assumed
to be equal in this case. There is enough information
to use the second condition for equilibrium (net τ =
0) if the pivot point is chosen to be at either hand,
thereby making the torque from that hand zero. We
choose to locate the pivot at the left hand in this
part of the problem, to eliminate the torque from
the left hand.

Solution for (a)

There are now only two nonzero torques, those
from the gravitational force (τw) and from the push
or pull of the right hand (τR). Stating the second
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condition in terms of clockwise and
counterclockwise torques,

or the algebraic sum of the torques is zero.

Here this is

since the weight of the pole creates a
counterclockwise torque and the right hand
counters with a clockwise torque. Using the
definition of torque, τ = rF sin θ, noting that θ = 90°,
and substituting known values, we obtain

Thus,

Solution for (b)

The first condition for equilibrium is based on the
free body diagram in the figure. This implies that by
Newton’s second law:

From this we can conclude:

Solving for FL, we obtain
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Discussion

FLis seen to be exactly half of FR, as we might have
guessed, since FL is applied twice as far from the cg
as FR.

If the pole vaulter holds the pole as he might at the start of
a run, shown in Figure 3, the forces change again. Both are
considerably greater, and one force reverses direction.

TAKE-HOME EXPERIMENT

This is an experiment to perform while standing in
a bus or a train. Stand facing sideways. How do you
move your body to readjust the distribution of your
mass as the bus accelerates and decelerates? Now
stand facing forward. How do you move your body
to readjust the distribution of your mass as the bus
accelerates and decelerates? Why is it easier and
safer to stand facing sideways rather than forward?
Note: For your safety (and those around you), make
sure you are holding onto something while you
carry out this activity!

590 | 8.4 Applications of Statics, Including Problem-Solving Strategies



PHET EXPLORATIONS: BALANCING
ACT

Play with objects on a teeter totter to learn about
balance. Test what you’ve learned by trying the
Balance Challenge game.

Figure 4. Balancing Act

Summary

• We have discussed the problem-solving strategies
specifically useful for statics.

Conceptual Questions

1: When visiting some countries, you may see a
person balancing a load on the head. Explain why the
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center of mass of the load needs to be directly above
the person’s neck vertebrae.

Problems & Exercises

1: In Figure 3, the cg of the pole held by the pole
vaulter is 2.00 m from the left hand, and the hands are
0.700 m apart. Calculate the force exerted by (a) his
right hand and (b) his left hand. (c) If each hand
supports half the weight of the pole in Figure 1, show
that the second condition for equilibrium (net τ = 0) is
satisfied for a pivot other than the one located at the
center of gravity of the pole. Explicitly show how you
follow the steps in the Problem-Solving Strategy for
static equilibrium described above.

Glossary

static equilibrium
equilibrium in which the acceleration of the system is zero
and accelerated rotation does not occur
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62. 8.5 Mechanical
Advantage

Summary

• Calculate the mechanical advantage.

Simple machines are devices that can be used to multiply or
augment a force that we apply – often at the expense of a
distance through which we apply the force. The human body
can be compared to simple machines depending on muscle
attachment and weight of the limb. The word for “machine”
comes from the Greek word meaning “to help make things
easier.” Levers, gears, pulleys, wedges, and screws are some
examples of machines. The ratio of output to input force
magnitudes for any simple machine is called its mechanical
advantage (MA).

MA = (F output) / ( F input )

One of the simplest machines is the lever, which is a rigid
bar pivoted at a fixed place called the fulcrum. Torques are
involved in levers, since there is rotation about a pivot point.
Distances from the physical pivot of the lever are crucial, and
we can obtain a useful expression for the MA in terms of these
distances.
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Figure 1. A nail puller is a lever with a large
mechanical advantage. The external forces on
the nail puller are represented by solid arrows.
The force that the nail puller applies to the
nail (Fo) is not a force on the nail puller. The
reaction force the nail exerts back on the
puller (Fn) is an external force and is equal
and opposite to Fo. The perpendicular lever
arms of the input and output forces areli
andl0.

Figure 1 shows a lever type that is used as a nail puller.
Crowbars, seesaws, and other such levers are all analogous to

this one. is the input force and is the output force.

There are three vertical forces acting on the nail puller (the

system of interest) – these are and is the

reaction force back on the system, equal and opposite to

(Note that is not a force on the system.) is the normal

force upon the lever, and its torque is zero since it is exerted

at the pivot. The torques due to and must be equal
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to each other if the nail is not moving, to satisfy the second
condition for equilibrium (net τ = 0). (In order for the nail to

actually move, the torque due to must be ever-so-slightly

greater than torque due to .) Hence,

where li and lo are the distances from where the input and
output forces are applied to the pivot, as shown in the figure.
Rearranging the last equation gives

What interests us most here is that the magnitude of the force
exerted by the nail puller, Fo, is much greater than the
magnitude of the input force applied to the puller at the other
end, Fi. For the nail puller,

This equation is true for levers in general. For the nail puller, the
MA is certainly greater than one. The longer the handle on the
nail puller, the greater the force you can exert with it.

Two other types of levers that differ slightly from the nail
puller are a wheelbarrow and a shovel, shown in Figure 2. All
these lever types are similar in that only three forces are
involved – the input force, the output force, and the force on

the pivot – and thus their MAs are given by and

with distances being measured relative to the

physical pivot. The wheelbarrow and shovel differ from the nail
puller because both the input and output forces are on the
same side of the pivot.
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In the case of the wheelbarrow, the output force or load is
between the pivot (the wheel’s axle) and the input or applied
force. In the case of the shovel, the input force is between the
pivot (at the end of the handle) and the load, but the input lever
arm is shorter than the output lever arm. In this case, the MA is
less than one.
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Figure 2. (a) In the case of the wheelbarrow, the output force or
load is between the pivot and the input force. The pivot is the
wheel’s axle. Here, the output force is greater than the input force.
Thus, a wheelbarrow enables you to lift much heavier loads than
you could with your body alone. (b) In the case of the shovel, the
input force is between the pivot and the load, but the input lever
arm is shorter than the output lever arm. The pivot is at the
handle held by the right hand. Here, the output force (supporting
the shovel’s load) is less than the input force (from the hand
nearest the load), because the input is exerted closer to the pivot
than is the output.

8.5 Mechanical Advantage | 597



Example 1: What is the Advantage
for the Wheelbarrow?

In the wheelbarrow of Figure 2, the load has a
perpendicular lever arm of 7.50 cm, while the hands
have a perpendicular lever arm of 1.02 m. (a) What
upward force must you exert to support the
wheelbarrow and its load if their combined mass is
45.0 kg? (b) What force does the wheelbarrow exert
on the ground?

Strategy

Here, we use the concept of mechanical
advantage.

Solution

(a) In this case, becomes

Adding values into this equation yields

The free-body diagram (see Figure 2) gives the
following normal force: Fi + N = W. Therefore, N =
(45.0 kg)(9.80 m/s2) -32.4 N = 409 N. N is the normal
force acting on the wheel; by Newton’s third law, the
force the wheel exerts on the ground is 409 N.
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Discussion

An even longer handle would reduce the force
needed to lift the load. The MA here is MA=1.02/
0.0750=13.6.

Another very simple machine is the inclined plane. Pushing
a cart up a plane is easier than lifting the same cart straight
up to the top using a ladder, because the applied force is less.
However, the work done in both cases (assuming the work
done by friction is negligible) is the same.

A crank is a lever that can be rotated 360° about its pivot, as
shown in Figure 3. Such a machine may not look like a lever,
but the physics of its actions remain the same. The MA for a
crank is simply the ratio of the radii ri/r0. Wheels and gears
have this simple expression for their MAs too. The MA can be
greater than 1, as it is for the crank, or less than 1, as it is for
the simplified car axle driving the wheels, as shown. If the axle’s
radius is 2.0 cm and the wheel’s radius is 24.0 cm, then MA=2.0/
24.0=0.083 and the axle would have to exert a force of 12,000
N on the wheel to enable it to exert a force of 1000 N on the
ground.
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Figure 3. (a) A crank is a type of lever
that can be rotated 360º about its
pivot. Cranks are usually designed to
have a large MA. (b) A simplified
automobile axle drives a wheel,
which has a much larger diameter
than the axle. The MA is less than 1.
(c) An ordinary pulley is used to lift a
heavy load. The pulley changes the
direction of the force T exerted by
the cord without changing its
magnitude. Hence, this machine has
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an MA of 1.

Section Summary

• Simple machines are devices that can be used to multiply
or augment a force that we apply – often at the expense of
a distance through which we have to apply the force.

• The ratio of output to input forces for any simple machine
is called its mechanical advantage

• A few simple machines are the lever, nail puller,
wheelbarrow, crank, etc.

Conceptual Questions

1: Why are the forces exerted on the outside world by
the limbs of our bodies usually much smaller than the
forces exerted by muscles inside the body?

2: Explain why the forces in our joints are several
times larger than the forces we exert on the outside
world with our limbs. Can these forces be even greater
than muscle forces (see previous Question)?

Glossary

mechanical advantage
the ratio of output to input forces for any simple machine
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63. 8.6 Forces and
Torques in Muscles and
Joints

Summary

• Explain the forces exerted by muscles.
• State how a bad posture causes back strain.
• Discuss the benefits of skeletal muscles

attached close to joints.
• Discuss various complexities in the real system

of muscles, bones, and joints.

Muscles, bones, and joints are some of the most interesting
applications of statics. There are some surprises. Muscles, for
example, exert far greater forces than we might think. Figure
1 shows a forearm holding a book and a schematic diagram
of an analogous lever system. The schematic is a good
approximation for the forearm, which looks more complicated
than it is, and we can get some insight into the way typical
muscle systems function by analyzing it.

Muscles can only contract, so they occur in pairs. In the arm,
the biceps muscle is a flexor—that is, it closes the limb. The
triceps muscle is an extensor that opens the limb. This
configuration is typical of skeletal muscles, bones, and joints
in humans and other vertebrates. Most skeletal muscles exert
much larger forces within the body than the limbs apply to the
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outside world. The reason is clear once we realize that most
muscles are attached to bones via tendons close to joints,
causing these systems to have mechanical advantages much
less than one. Viewing them as simple machines, the input
force is much greater than the output force, as seen in Figure 1.

Figure 1. (a) The figure shows the forearm of a person holding a book.
The biceps exert a force FB to support the weight of the forearm and
the book. The triceps are assumed to be relaxed. (b) Here, you can
view an approximately equivalent mechanical system with the pivot
at the elbow joint as seen in Example 1.
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Example 1: Muscles Exert Bigger
Forces Than You Might Think

Calculate the force the biceps muscle must exert
to hold the forearm and its load as shown in Figure 1,
and compare this force with the weight of the
forearm plus its load. You may take the data in the
figure to be accurate to three significant figures.

Strategy

There are four forces acting on the forearm and its
load (the system of interest). The magnitude of the
force of the biceps is FB; that of the elbow joint is FE;
that of the weights of the forearm is wa, and its load
is wb.Two of these are unknown (FB and FE), so that
the first condition for equilibrium cannot by itself
yield FB. But if we use the second condition and
choose the pivot to be at the elbow, then the torque
due to FE is zero, and the only unknown becomes
FB.

Solution

The torques created by the weights are clockwise
relative to the pivot, while the torque created by the
biceps is counterclockwise; thus, the second
condition for equilibrium (net τ = 0) becomes

Note that sin θ=1 for all forces, since θ=90° for all
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forces. This equation can easily be solved for FB in
terms of known quantities, yielding

Entering the known values gives

which yields

Now, the combined weight of the arm and its load
is (6.50 kg)(9.80 m/s2)=63.7 N, so that the ratio of
the force exerted by the biceps to the total weight is

Discussion

This means that the biceps muscle is exerting a
force 7.38 times the weight supported.

In the above example of the biceps muscle, the angle between
the forearm and upper arm is 90°. If this angle changes, the
force exerted by the biceps muscle also changes. In addition,
the length of the biceps muscle changes. The force the biceps
muscle can exert depends upon its length; it is smaller when it
is shorter than when it is stretched.

Very large forces are also created in the joints. In the previous
example, the downward force FE exerted by the humerus at
the elbow joint equals 407 N, or 6.38 times the total weight
supported. (The calculation of FE is straightforward and is left
as an end-of-chapter problem.) Because muscles can contract,
but not expand beyond their resting length, joints and muscles
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often exert forces that act in opposite directions and thus
subtract. (In the above example, the upward force of the
muscle minus the downward force of the joint equals the
weight supported—that is, 470 N-407 N=63 N, approximately
equal to the weight supported.) Forces in muscles and joints
are largest when their load is a long distance from the joint, as
the book is in the previous example.

In racquet sports such as tennis the constant extension of
the arm during game play creates large forces in this way. The
mass times the lever arm of a tennis racquet is an important
factor, and many players use the heaviest racquet they can
handle. It is no wonder that joint deterioration and damage to
the tendons in the elbow, such as “tennis elbow,” can result
from repetitive motion, undue torques, and possibly poor
racquet selection in such sports. Various tried techniques for
holding and using a racquet or bat or stick not only increases
sporting prowess but can minimize fatigue and long-term
damage to the body. For example, tennis balls correctly hit at
the “sweet spot” on the racquet will result in little vibration
or impact force being felt in the racquet and the body—less
torque. Twisting the hand to provide top spin on the ball or
using an extended rigid elbow in a backhand stroke can also
aggravate the tendons in the elbow.

Training coaches and physical therapists use the knowledge
of relationships between forces and torques in the treatment
of muscles and joints. In physical therapy, an exercise routine
can apply a particular force and torque which can, over a period
of time, revive muscles and joints. Some exercises are designed
to be carried out under water, because this requires greater
forces to be exerted, further strengthening muscles. However,
connecting tissues in the limbs, such as tendons and cartilage
as well as joints are sometimes damaged by the large forces
they carry. Often, this is due to accidents, but heavily muscled
athletes, such as weightlifters, can tear muscles and
connecting tissue through effort alone.
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The back is considerably more complicated than the arm
or leg, with various muscles and joints between vertebrae, all
having mechanical advantages less than 1. Back muscles must,
therefore, exert very large forces, which are borne by the spinal
column. Discs crushed by mere exertion are very common. The
jaw is somewhat exceptional—the masseter muscles that close
the jaw have a mechanical advantage greater than 1 for the
back teeth, allowing us to exert very large forces with them.
A cause of stress headaches is persistent clenching of teeth
where the sustained large force translates into fatigue in
muscles around the skull.

Figure 2 shows how bad posture causes back strain. In part
(a), we see a person with good posture. Note that her upper
body’s cg is directly above the pivot point in the hips, which in
turn is directly above the base of support at her feet. Because
of this, her upper body’s weight exerts no torque about the
hips. The only force needed is a vertical force at the hips equal
to the weight supported. No muscle action is required, since
the bones are rigid and transmit this force from the floor. This
is a position of unstable equilibrium, but only small forces are
needed to bring the upper body back to vertical if it is slightly
displaced. Bad posture is shown in part (b); we see that the
upper body’s cg is in front of the pivot in the hips. This creates
a clockwise torque around the hips that is counteracted by
muscles in the lower back. These muscles must exert large
forces, since they have typically small mechanical advantages.
(In other words, the perpendicular lever arm for the muscles
is much smaller than for the cg.) Poor posture can also cause
muscle strain for people sitting at their desks using computers.
Special chairs are available that allow the body’s CG to be more
easily situated above the seat, to reduce back pain. Prolonged
muscle action produces muscle strain. Note that the cg of the
entire body is still directly above the base of support in part (b)
of Figure 2. This is compulsory; otherwise the person would not
be in equilibrium. We lean forward for the same reason when
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carrying a load on our backs, to the side when carrying a load
in one arm, and backward when carrying a load in front of us,
as seen in Figure 3.

Figure 2. (a) Good posture places the upper body’s cg
over the pivots in the hips, eliminating the need for
muscle action to balance the body. (b) Poor posture
requires exertion by the back muscles to counteract the
clockwise torque produced around the pivot by the
upper body’s weight. The back muscles have a small
effective perpendicular lever arm, rb⊥, and must
therefore exert a large force Fb. Note that the legs lean
backward to keep the cg of the entire body above the
base of support in the feet.

You have probably been warned against lifting objects with
your back. This action, even more than bad posture, can cause
muscle strain and damage discs and vertebrae, since
abnormally large forces are created in the back muscles and
spine.
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Figure 3. People adjust their stance to maintain
balance. (a) A father carrying his son piggyback
leans forward to position their overall cg above
the base of support at his feet. (b) A student
carrying a shoulder bag leans to the side to keep
the overall cg over his feet. (c) Another student
carrying a load of books in her arms leans
backward for the same reason.

Example 2: Do Not Lift with Your
Back

Consider the person lifting a heavy box with his
back, shown in Figure 4. (a) Calculate the
magnitude of the force FB– in the back muscles that
is needed to support the upper body plus the box
and compare this with his weight. The mass of the
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upper body is 55.0 kg and the mass of the box is 30.0
kg. (b) Calculate the magnitude and direction of the
force FV– exerted by the vertebrae on the spine at
the indicated pivot point. Again, data in the figure
may be taken to be accurate to three significant
figures.

Strategy

By now, we sense that the second condition for
equilibrium is a good place to start, and inspection
of the known values confirms that it can be used to
solve for FB– if the pivot is chosen to be at the hips.
The torques created by wub and wbox– are

clockwise, while that created by – is

counterclockwise.

Solution for (a)

Using the perpendicular lever arms given in the
figure, the second condition for equilibrium (net
τ=0) becomes

Solving for FB yields

The ratio of the force the back muscles exert to
the weight of the upper body plus its load is

This force is considerably larger than it would be if
the load were not present.

Solution for (b)
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More important in terms of its damage potential is
the force on the vertebrae FV. The first condition for
equilibrium (net F=0) can be used to find its
magnitude and direction. Using y for vertical and x
for horizontal, the condition for the net external
forces along those axes to be zero

Starting with the vertical (y) components, this
yields

Thus,

yielding

Similarly, for the horizontal (x) components,

yielding

The magnitude of is given by the

Pythagorean theorem:

The direction of is

8.6 Forces and Torques in Muscles and Joints | 611



Note that the ratio of FV to the weight supported
is

Discussion

This force is about 5.6 times greater than it would
be if the person were standing erect. The trouble
with the back is not so much that the forces are
large—because similar forces are created in our hips,
knees, and ankles—but that our spines are relatively
weak. Proper lifting, performed with the back erect
and using the legs to raise the body and load,
creates much smaller forces in the back—in this
case, about 5.6 times smaller.
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Figure 4. This figure shows that large forces are exerted
by the back muscles and experienced in the vertebrae
when a person lifts with their back, since these muscles
have small effective perpendicular lever arms. The data
shown here are analyzed in the preceding example,
Example 2.

What are the benefits of having most skeletal muscles
attached so close to joints? One advantage is speed because
small muscle contractions can produce large movements of
limbs in a short period of time. Other advantages are flexibility
and agility, made possible by the large numbers of joints and
the ranges over which they function. For example, it is difficult
to imagine a system with biceps muscles attached at the wrist
that would be capable of the broad range of movement we
vertebrates possess.

There are some interesting complexities in real systems of
muscles, bones, and joints. For instance, the pivot point in

8.6 Forces and Torques in Muscles and Joints | 613



many joints changes location as the joint is flexed, so that the
perpendicular lever arms and the mechanical advantage of the
system change, too. Thus the force the biceps muscle must
exert to hold up a book varies as the forearm is flexed. Similar
mechanisms operate in the legs, which explain, for example,
why there is less leg strain when a bicycle seat is set at the
proper height. The methods employed in this section give a
reasonable description of real systems provided enough is
known about the dimensions of the system. There are many
other interesting examples of force and torque in the body—a
few of these are the subject of end-of-chapter problems.

Section Summary

• Statics plays an important part in understanding everyday
strains in our muscles and bones.

• Many lever systems in the body have a mechanical
advantage of significantly less than one, as many of our
muscles are attached close to joints.

• Someone with good posture stands or sits in such as way
that their center of gravity lies directly above the pivot
point in their hips, thereby avoiding back strain and
damage to disks.

Conceptual Questions

1: Why are the forces exerted on the outside world by
the limbs of our bodies usually much smaller than the
forces exerted by muscles inside the body?
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2: Explain why the forces in our joints are several
times larger than the forces we exert on the outside
world with our limbs. Can these forces be even greater
than muscle forces?

3: Certain types of dinosaurs were bipedal (walked on
two legs). What is a good reason that these creatures
invariably had long tails if they had long necks?

4: Swimmers and athletes during competition need
to go through certain postures at the beginning of the
race. Consider the balance of the person and why start-
offs are so important for races.

5: If the maximum force the biceps muscle can exert
is 1000 N, can we pick up an object that weighs 1000 N?
Explain your answer.

6: Suppose the biceps muscle was attached through
tendons to the upper arm close to the elbow and the
forearm near the wrist. What would be the advantages
and disadvantages of this type of construction for the
motion of the arm?

7: Explain one of the reasons why pregnant women
often suffer from back strain late in their pregnancy.
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Problems & Exercises

1: Verify that the force in the elbow joint in Example 1
is 407 N, as stated in the text.

2: Two muscles in the back of the leg pull on the
Achilles tendon as shown in Figure 5. What total force
do they exert?

Figure 5. The Achilles
tendon of the posterior leg
serves to attach plantaris,
gastrocnemius, and soleus
muscles to calcaneus bone.

3: The upper leg muscle (quadriceps) exerts a force of
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1250 N, which is carried by a tendon over the kneecap
(the patella) at the angles shown in Figure 6. Find the
direction and magnitude of the force exerted by the
kneecap on the upper leg bone (the femur).

Figure 6. The knee joint
works like a hinge to bend
and straighten the lower
leg. It permits a person to
sit, stand, and pivot.

4: A device for exercising the upper leg muscle is
shown in Figure 7, together with a schematic
representation of an equivalent lever system. Calculate
the force exerted by the upper leg muscle to lift the
mass at a constant speed. Explicitly show how you
follow the steps in the Problem-Solving Strategy for
static equilibrium in Chapter 9.4 Applications of
Statistics, Including Problem-Solving Strategies.
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Figure 7. A mass is connected by pulleys and wires to
the ankle in this exercise device.

5: A person working at a drafting board may hold her
head as shown in Figure 8, requiring muscle action to
support the head. The three major acting forces are
shown. Calculate the direction and magnitude of the
force supplied by the upper vertebrae FV to hold the
head stationary, assuming that this force acts along a
line through the center of mass as do the weight and
muscle force.
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Figure 8.

6: We analyzed the biceps muscle example with the
angle between forearm and upper arm set at 90°.
Using the same numbers as in Example 1, find the force
exerted by the biceps muscle when the angle is 120°
and the forearm is in a downward position.

7: Even when the head is held erect, as in Figure 9, its
center of mass is not directly over the principal point of
support (the atlanto-occipital joint). The muscles at the
back of the neck should therefore exert a force to keep
the head erect. That is why your head falls forward
when you fall asleep in the class. (a) Calculate the force
exerted by these muscles using the information in the
figure. (b) What is the force exerted by the pivot on the
head?
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Figure 9. The center of mass of the head
lies in front of its major point of support,
requiring muscle action to hold the
head erect. A simplified lever system is
shown.

8: A 75-kg man stands on his toes by exerting an
upward force through the Achilles tendon, as in Figure
10. (a) What is the force in the Achilles tendon if he
stands on one foot? (b) Calculate the force at the pivot
of the simplified lever system shown—that force is
representative of forces in the ankle joint.
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Figure 10. The muscles in the back of
the leg pull the Achilles tendon when
one stands on one’s toes. A
simplified lever system is shown.

9: A father lifts his child as shown in Figure 11. What
force should the upper leg muscle exert to lift the child
at a constant speed?
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Figure 11. A child being lifted by a father’s lower leg.

10: Unlike most of the other muscles in our bodies,
the masseter muscle in the jaw, as illustrated in Figure
12, is attached relatively far from the joint, enabling
large forces to be exerted by the back teeth. (a) Using
the information in the figure, calculate the force
exerted by the lower teeth on the bullet. (b) Calculate
the force on the joint.
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Figure 12. A person clenching a bullet
between his teeth.

11: Integrated Concepts

Suppose we replace the 4.0-kg book in Exercise 6 of
the biceps muscle with an elastic exercise rope that
obeys Hooke’s Law. Assume its force constant k=600 N/
m. (a) How much is the rope stretched (past
equilibrium) to provide the same force FB as in this
example? Assume the rope is held in the hand at the
same location as the book. (b) What force is on the
biceps muscle if the exercise rope is pulled straight up
so that the forearm makes an angle of 25° with the
horizontal? Assume the biceps muscle is still
perpendicular to the forearm.

12: (a) What force should the woman in Figure 13
exert on the floor with each hand to do a push-up?
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Assume that she moves up at a constant speed. (b) The
triceps muscle at the back of her upper arm has an
effective lever arm of 1.75 cm, and she exerts force on
the floor at a horizontal distance of 20.0 cm from the
elbow joint. Calculate the magnitude of the force in
each triceps muscle, and compare it to her weight. (c)
How much work does she do if her center of mass rises
0.240 m? (d) What is her useful power output if she
does 25 pushups in one minute?

Figure 13. A woman doing pushups.

13: You have just planted a sturdy 2-m-tall palm tree
in your front lawn for your mother’s birthday. Your
brother kicks a 500 g ball, which hits the top of the tree
at a speed of 5 m/s and stays in contact with it for 10
ms. The ball falls to the ground near the base of the
tree and the recoil of the tree is minimal. (a) What is the
force on the tree? (b) The length of the sturdy section
of the root is only 20 cm. Furthermore, the soil around
the roots is loose and we can assume that an effective
force is applied at the tip of the 20 cm length. What is
the effective force exerted by the end of the tip of the
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root to keep the tree from toppling? Assume the tree
will be uprooted rather than bend. (c) What could you
have done to ensure that the tree does not uproot
easily?

14: Unreasonable Results

Suppose two children are using a uniform seesaw
that is 3.00 m long and has its center of mass over the
pivot. The first child has a mass of 30.0 kg and sits 1.40
m from the pivot. (a) Calculate where the second 18.0
kg child must sit to balance the seesaw. (b) What is
unreasonable about the result? (c) Which premise is
unreasonable, or which premises are inconsistent?

15: Construct Your Own Problem

Consider a method for measuring the mass of a
person’s arm in anatomical studies. The subject lies on
her back, extends her relaxed arm to the side and two
scales are placed below the arm. One is placed under
the elbow and the other under the back of her hand.
Construct a problem in which you calculate the mass of
the arm and find its center of mass based on the scale
readings and the distances of the scales from the
shoulder joint. You must include a free body diagram
of the arm to direct the analysis. Consider changing the
position of the scale under the hand to provide more
information, if needed. You may wish to consult
references to obtain reasonable mass values.
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Solutions

Problems & Exercises

1:

3:

5:

7: (a) downward (b) upward

8: (a) upward (b)

downward

10: (a)

upward (b) downward

12: (a) downward (b) times

her weight (c) (d)

14: (a) (b) The seesaw is 3.0 m long,

and hence, there is only 1.50 m of board on the other
side of the pivot. The second child is off the board. (c)
The position of the first child must be shortened, i.e.
brought closer to the pivot.
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PART IX

CHAPTER 9: MECHANICS
OF HUMAN TISSUES

Chapter Objectives

After this chapter, you will be able to:

• Describe the anatomy of muscle-tendon
complex.

• Describe the function and structure of muscle
• Explain how muscles work with tendons to

move the body
• Describe how muscles contract and relax
• Explain how the nervous system controls

muscle tension
• Define concentric action, eccentric action,

electromechanical delay, fatigue, hyperplasia,
hypertrophy, atrophy, isometric action, motor
unit.

• Describe how the muscle-tendon complex acts
together to create movement.

• List the factors that affect how much force the
muscle-tendon complex can produce.

• Describe how the body moves as a series of
lever systems.
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64. 9.1 Overview of
Muscle Tissues

Muscle is one of the four primary tissue types of the body, and
the body contains three types of muscle tissue: skeletal muscle,
cardiac muscle, and smooth muscle (Figure 1). All three muscle
tissues have some properties in common; they all exhibit a
quality called excitability as their plasma membranes can
change their electrical states (from polarized to depolarized)
and send an electrical wave called an action potential along the
entire length of the membrane. Skeletal muscle completely
depends on signaling from the nervous system to work
properly. On the other hand, both cardiac muscle and smooth
muscle can respond to other stimuli, such as hormones and
local stimuli.
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Figure 1. The Three Types of Muscle Tissue. The body
contains three types of muscle tissue: (a) skeletal muscle,
(b) smooth muscle, and (c) cardiac muscle. From top, LM ×
1600, LM × 1600, LM × 1600. (Micrographs provided by the
Regents of University of Michigan Medical School © 2012)
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The muscles all begin the actual process of contracting
(shortening) when a protein called actin is pulled by a protein
called myosin. This occurs in striated muscle (skeletal and
cardiac) after specific binding sites on the actin have been
exposed in response to the interaction between calcium ions
(Ca++) and proteins (troponin and tropomyosin) that “shield”
the actin-binding sites. Ca++ also is required for the contraction
of smooth muscle, although its role is different: here Ca++

activates enzymes, which in turn activate myosin heads. All
muscles require adenosine triphosphate (ATP) to continue the
process of contracting, and they all relax when the Ca++ is
removed and the actin-binding sites are re-shielded.

A muscle can return to its original length when relaxed due
to a quality of muscle tissue called elasticity. It can recoil back
to its original length due to elastic fibers. Muscle tissue also
has the quality of extensibility; it can stretch or extend.
Contractility allows muscle tissue to pull on its attachment
points and shorten with force.

Skeletal muscles are made up of contractile proteins—actin
and myosin. The actin and myosin proteins are arranged very
regularly in the cytoplasm of individual muscle cells (referred to
as fibers), which creates a pattern, or stripes, called striations.
The striations are visible with a light microscope under high
magnification (see Figure 1). Skeletal muscle fibers are
multinucleated structures that compose the skeletal
muscle.

Review Questions

1. Muscle that has a striped appearance is described
as being ________.
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A. elastic
B. nonstriated
C. excitable
D. striated

2. Which element is important in directly triggering
contraction?

A. sodium (Na+)
B. calcium (Ca++)
C. potassium (K+)
D. chloride (Cl–)

3. Which of the following properties is not common
to all three muscle tissues?

A. excitability
B. the need for ATP
C. at rest, uses shielding proteins to cover actin-

binding sites
D. elasticity

Critical Thinking Questions

1. Why is elasticity an important quality of muscle
tissue?
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Glossary

cardiac muscle
striated muscle found in the heart; joined to one another
at intercalated discs and under the regulation of
pacemaker cells, which contract as one unit to pump
blood through the circulatory system. Cardiac muscle is
under involuntary control.

contractility
ability to shorten (contract) forcibly

elasticity
ability to stretch and rebound

excitability
ability to undergo neural stimulation

extensibility
ability to lengthen (extend)

skeletal muscle
striated, multinucleated muscle that requires signaling
from the nervous system to trigger contraction; most
skeletal muscles are referred to as voluntary muscles that
move bones and produce movement

smooth muscle
nonstriated, mononucleated muscle in the skin that is
associated with hair follicles; assists in moving materials in
the walls of internal organs, blood vessels, and internal
passageways

Solutions

Answers for Review Questions

1. D
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2. B
3. C

Answers for Critical Thinking Questions

1. It allows muscle to return to its original length
during relaxation after contraction.
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65. 9.2 Skeletal Muscle

The best-known feature of skeletal muscle is its ability to
contract and cause movement. Skeletal muscles act not only
to produce movement but also to stop movement, such as
resisting gravity to maintain posture. Small, constant
adjustments of the skeletal muscles are needed to hold a body
upright or balanced in any position. Muscles also prevent
excess movement of the bones and joints, maintaining skeletal
stability and preventing skeletal structure damage or
deformation. Joints can become misaligned or dislocated
entirely by pulling on the associated bones; muscles work to
keep joints stable. Skeletal muscles are located throughout the
body at the openings of internal tracts to control the
movement of various substances. These muscles allow
functions, such as swallowing, urination, and defecation, to be
under voluntary control. Skeletal muscles also protect internal
organs (particularly abdominal and pelvic organs) by acting
as an external barrier or shield to external trauma and by
supporting the weight of the organs.

Skeletal muscles contribute to the maintenance of
homeostasis in the body by generating heat. Muscle
contraction requires energy, and when ATP is broken down,
heat is produced. This heat is very noticeable during exercise,
when sustained muscle movement causes body temperature
to rise, and in cases of extreme cold, when shivering produces
random skeletal muscle contractions to generate heat.

Each skeletal muscle is an organ that consists of various
integrated tissues. These tissues include the skeletal muscle
fibers, blood vessels, nerve fibers, and connective tissue. Each
skeletal muscle has three layers of connective tissue (called
“mysia”) that enclose it and provide structure to the muscle as a
whole, and also compartmentalize the muscle fibers within the
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muscle (Figure 1). Each muscle is wrapped in a sheath of dense,
irregular connective tissue called the epimysium, which allows
a muscle to contract and move powerfully while maintaining
its structural integrity. The epimysium also separates muscle
from other tissues and organs in the area, allowing the muscle
to move independently.

Figure 1. The Three Connective Tissue Layers. Bundles of muscle fibers,
called fascicles, are covered by the perimysium. Muscle fibers are
covered by the endomysium.

Inside each skeletal muscle, muscle fibers are organized into
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individual bundles, each called a fascicle, by a middle layer
of connective tissue called the perimysium. This fascicular
organization is common in muscles of the limbs; it allows the
nervous system to trigger a specific movement of a muscle
by activating a subset of muscle fibers within a bundle, or
fascicle of the muscle. Inside each fascicle, each muscle fiber
is encased in a thin connective tissue layer of collagen and
reticular fibers called the endomysium. The endomysium
contains the extracellular fluid and nutrients to support the
muscle fiber. These nutrients are supplied via blood to the
muscle tissue.

In skeletal muscles that work with tendons to pull on bones,
the collagen in the three tissue layers (the mysia) intertwines
with the collagen of a tendon. At the other end of the tendon,
it fuses with the periosteum coating the bone. The tension
created by contraction of the muscle fibers is then transferred
though the mysia, to the tendon, and then to the periosteum to
pull on the bone for movement of the skeleton. In other places,
the mysia may fuse with a broad, tendon-like sheet called an
aponeurosis, or to fascia, the connective tissue between skin
and bones. The broad sheet of connective tissue in the lower
back that the latissimus dorsi muscles (the “lats”) fuse into is an
example of an aponeurosis.

Every skeletal muscle is also richly supplied by blood vessels
for nourishment, oxygen delivery, and waste removal. In
addition, every muscle fiber in a skeletal muscle is supplied
by the axon branch of a somatic motor neuron, which signals
the fiber to contract. Unlike cardiac and smooth muscle, the
only way to functionally contract a skeletal muscle is through
signaling from the nervous system.
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Skeletal Muscle Fibers

Because skeletal muscle cells are long and cylindrical, they are
commonly referred to as muscle fibers. Skeletal muscle fibers
can be quite large for human cells, with diameters up to 100
μm and lengths up to 30 cm (11.8 in) in the Sartorius of the
upper leg. During early development, embryonic myoblasts,
each with its own nucleus, fuse with up to hundreds of other
myoblasts to form the multinucleated skeletal muscle fibers.
Multiple nuclei mean multiple copies of genes, permitting the
production of the large amounts of proteins and enzymes
needed for muscle contraction.

Some other terminology associated with muscle fibers is
rooted in the Greek sarco, which means “flesh.” The plasma
membrane of muscle fibers is called the sarcolemma, the
cytoplasm is referred to as sarcoplasm, and the specialized
smooth endoplasmic reticulum, which stores, releases, and
retrieves calcium ions (Ca++) is called the sarcoplasmic
reticulum (SR) (Figure 2). As will soon be described, the
functional unit of a skeletal muscle fiber is the sarcomere, a
highly organized arrangement of the contractile myofilaments
actin (thin filament) and myosin (thick filament), along with
other support proteins.
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Figure 2. Muscle Fiber. A skeletal muscle fiber is surrounded by a
plasma membrane called the sarcolemma, which contains
sarcoplasm, the cytoplasm of muscle cells. A muscle fiber is
composed of many fibrils, which give the cell its striated appearance.

The Sarcomere

The striated appearance of skeletal muscle fibers is due to the
arrangement of the myofilaments of actin and myosin in
sequential order from one end of the muscle fiber to the other.
Each packet of these microfilaments and their regulatory
proteins, troponin and tropomyosin (along with other proteins)
is called a sarcomere.
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Watch this video to
learn more about
macro- and
microstructures of
skeletal muscles.

Watch this video to learn more about macro- and
microstructures of skeletal muscles. (a) What are the names
of the “junction points” between sarcomeres? (b) What are
the names of the “subunits” within the myofibrils that run the
length of skeletal muscle fibers? (c) What is the “double strand
of pearls” described in the video? (d) What gives a skeletal
muscle fiber its striated appearance?

The sarcomere is the functional unit of the muscle fiber. The
sarcomere itself is bundled within the myofibril that runs the
entire length of the muscle fiber and attaches to the
sarcolemma at its end. As myofibrils contract, the entire
muscle cell contracts. Because myofibrils are only
approximately 1.2 μm in diameter, hundreds to thousands
(each with thousands of sarcomeres) can be found inside one
muscle fiber. Each sarcomere is approximately 2 μm in length
with a three-dimensional cylinder-like arrangement and is
bordered by structures called Z-discs (also called Z-lines,
because pictures are two-dimensional), to which the actin
myofilaments are anchored (Figure 3). Because the actin and
its troponin-tropomyosin complex (projecting from the Z-discs
toward the center of the sarcomere) form strands that are
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thinner than the myosin, it is called the thin filament of the
sarcomere. Likewise, because the myosin strands and their
multiple heads (projecting from the center of the sarcomere,
toward but not all to way to, the Z-discs) have more mass and
are thicker, they are called the thick filament of the sarcomere.

Figure 3. The Sarcomere. The sarcomere, the region from one Z-line to
the next Z-line, is the functional unit of a skeletal muscle fiber.

The Neuromuscular Junction

Another specialization of the skeletal muscle is the site where
a motor neuron’s terminal meets the muscle fiber—called the
neuromuscular junction (NMJ). This is where the muscle fiber
first responds to signaling by the motor neuron. Every skeletal
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muscle fiber in every skeletal muscle is innervated by a motor
neuron at the NMJ. Excitation signals from the neuron are the
only way to functionally activate the fiber to contract.

Watch this video to
learn more about
what happens at the
NMJ.

Every skeletal muscle fiber is supplied by a motor neuron at the
NMJ. Watch this video to learn more about what happens at
the NMJ. (a) What is the definition of a motor unit? (b) What is
the structural and functional difference between a large motor
unit and a small motor unit? (c) Can you give an example of
each? (d) Why is the neurotransmitter acetylcholine degraded
after binding to its receptor?

Excitation-Contraction Coupling

All living cells have membrane potentials, or electrical
gradients across their membranes. The inside of the
membrane is usually around -60 to -90 mV, relative to the
outside. This is referred to as a cell’s membrane potential.
Neurons and muscle cells can use their membrane potentials
to generate electrical signals. They do this by controlling the
movement of charged particles, called ions, across their
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membranes to create electrical currents. This is achieved by
opening and closing specialized proteins in the membrane
called ion channels. Although the currents generated by ions
moving through these channel proteins are very small, they
form the basis of both neural signaling and muscle contraction.

Both neurons and skeletal muscle cells are electrically
excitable, meaning that they are able to generate action
potentials. An action potential is a special type of electrical
signal that can travel along a cell membrane as a wave. This
allows a signal to be transmitted quickly and faithfully over long
distances.

Although the term excitation-contraction coupling
confuses or scares some students, it comes down to this: for
a skeletal muscle fiber to contract, its membrane must first
be “excited”—in other words, it must be stimulated to fire an
action potential. The muscle fiber action potential, which
sweeps along the sarcolemma as a wave, is “coupled” to the
actual contraction through the release of calcium ions (Ca++)
from the SR. Once released, the Ca++ interacts with the
shielding proteins, forcing them to move aside so that the
actin-binding sites are available for attachment by myosin
heads. The myosin then pulls the actin filaments toward the
center, shortening the muscle fiber.

In skeletal muscle, this sequence begins with signals from
the somatic motor division of the nervous system. In other
words, the “excitation” step in skeletal muscles is always
triggered by signaling from the nervous system (Figure 4).
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Figure 4. Motor End-Plate and Innervation. At the NMJ, the axon
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terminal releases ACh. The motor end-plate is the location of the
ACh-receptors in the muscle fiber sarcolemma. When ACh molecules
are released, they diffuse across a minute space called the synaptic
cleft and bind to the receptors.

The motor neurons that tell the skeletal muscle fibers to
contract originate in the spinal cord, with a smaller number
located in the brainstem for activation of skeletal muscles of
the face, head, and neck. These neurons have long processes,
called axons, which are specialized to transmit action
potentials long distances— in this case, all the way from the
spinal cord to the muscle itself (which may be up to three feet
away). The axons of multiple neurons bundle together to form
nerves, like wires bundled together in a cable.

Signaling begins when a neuronal action potential travels
along the axon of a motor neuron, and then along the
individual branches to terminate at the NMJ. At the NMJ, the
axon terminal releases a chemical messenger, or
neurotransmitter, called acetylcholine (ACh). The ACh
molecules diffuse across a minute space called the synaptic
cleft and bind to ACh receptors located within the motor end-
plate of the sarcolemma on the other side of the synapse. Once
ACh binds, a channel in the ACh receptor opens and positively
charged ions can pass through into the muscle fiber, causing
it to depolarize, meaning that the membrane potential of the
muscle fiber becomes less negative (closer to zero.)

As the membrane depolarizes, another set of ion channels
called voltage-gated sodium channels are triggered to open.
Sodium ions enter the muscle fiber, and an action potential
rapidly spreads (or “fires”) along the entire membrane to
initiate excitation-contraction coupling.

Things happen very quickly in the world of excitable
membranes (just think about how quickly you can snap your
fingers as soon as you decide to do it). Immediately following
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depolarization of the membrane, it repolarizes, re-establishing
the negative membrane potential. Meanwhile, the ACh in the
synaptic cleft is degraded by the enzyme acetylcholinesterase
(AChE) so that the ACh cannot rebind to a receptor and reopen
its channel, which would cause unwanted extended muscle
excitation and contraction.

Propagation of an action potential along the sarcolemma is
the excitation portion of excitation-contraction coupling. Recall
that this excitation actually triggers the release of calcium ions
(Ca++) from its storage in the cell’s SR. For the action potential
to reach the membrane of the SR, there are periodic
invaginations in the sarcolemma, called T-tubules (“T” stands
for “transverse”). You will recall that the diameter of a muscle
fiber can be up to 100 μm, so these T-tubules ensure that the
membrane can get close to the SR in the sarcoplasm. The
arrangement of a T-tubule with the membranes of SR on either
side is called a triad (Figure 5). The triad surrounds the
cylindrical structure called a myofibril, which contains actin
and myosin.
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Figure 5. The T-tubule. Narrow T-tubules permit the conduction
of electrical impulses. The SR functions to regulate intracellular
levels of calcium. Two terminal cisternae (where enlarged SR
connects to the T-tubule) and one T-tubule comprise a triad—a
“threesome” of membranes, with those of SR on two sides and
the T-tubule sandwiched between them.

The T-tubules carry the action potential into the interior of the
cell, which triggers the opening of calcium channels in the
membrane of the adjacent SR, causing Ca++ to diffuse out of
the SR and into the sarcoplasm. It is the arrival of Ca++ in the
sarcoplasm that initiates contraction of the muscle fiber by its
contractile units, or sarcomeres.

Chapter Review

Skeletal muscles contain connective tissue, blood vessels, and
nerves. There are three layers of connective tissue: epimysium,
perimysium, and endomysium. Skeletal muscle fibers are
organized into groups called fascicles. Blood vessels and nerves
enter the connective tissue and branch in the cell. Muscles
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attach to bones directly or through tendons or aponeuroses.
Skeletal muscles maintain posture, stabilize bones and joints,
control internal movement, and generate heat.

Skeletal muscle fibers are long, multinucleated cells. The
membrane of the cell is the sarcolemma; the cytoplasm of
the cell is the sarcoplasm. The sarcoplasmic reticulum (SR) is
a form of endoplasmic reticulum. Muscle fibers are composed
of myofibrils. The striations are created by the organization of
actin and myosin resulting in the banding pattern of myofibrils.

Interactive Link Questions

Watch this video to learn more about macro- and
microstructures of skeletal muscles. (a) What are the names
of the “junction points” between sarcomeres? (b) What are
the names of the “subunits” within the myofibrils that run the
length of skeletal muscle fibers? (c) What is the “double strand
of pearls” described in the video? (d) What gives a skeletal
muscle fiber its striated appearance?

(a) Z-lines. (b) Sarcomeres. (c) This is the arrangement of the
actin and myosin filaments in a sarcomere. (d) The alternating
strands of actin and myosin filaments.

Every skeletal muscle fiber is supplied by a motor neuron at
the NMJ. Watch this video to learn more about what happens
at the neuromuscular junction. (a) What is the definition of a
motor unit? (b) What is the structural and functional difference
between a large motor unit and a small motor unit? Can you
give an example of each? (c) Why is the neurotransmitter
acetylcholine degraded after binding to its receptor?

(a) It is the number of skeletal muscle fibers supplied by a
single motor neuron. (b) A large motor unit has one neuron
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supplying many skeletal muscle fibers for gross movements,
like the Temporalis muscle, where 1000 fibers are supplied by
one neuron. A small motor has one neuron supplying few
skeletal muscle fibers for very fine movements, like the
extraocular eye muscles, where six fibers are supplied by one
neuron. (c) To avoid prolongation of muscle contraction.

Review Questions

1. The correct order for the smallest to the largest unit
of organization in muscle tissue is ________.

A. fascicle, filament, muscle fiber, myofibril
B. filament, myofibril, muscle fiber, fascicle
C. muscle fiber, fascicle, filament, myofibril
D. myofibril, muscle fiber, filament, fascicle

2. Depolarization of the sarcolemma means ________.

A. the inside of the membrane has become less
negative as sodium ions accumulate

B. the outside of the membrane has become less
negative as sodium ions accumulate

C. the inside of the membrane has become more
negative as sodium ions accumulate

D. the sarcolemma has completely lost any
electrical charge
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Critical Thinking Questions

1. What would happen to skeletal muscle if the
epimysium were destroyed?

2. Describe how tendons facilitate body movement.

3. What are the five primary functions of skeletal
muscle?

4. What are the opposite roles of voltage-gated
sodium channels and voltage-gated potassium
channels?

Glossary

acetylcholine (ACh)
neurotransmitter that binds at a motor end-plate to
trigger depolarization

actin
protein that makes up most of the thin myofilaments in a
sarcomere muscle fiber

action potential
change in voltage of a cell membrane in response to a
stimulus that results in transmission of an electrical signal;
unique to neurons and muscle fibers

aponeurosis
broad, tendon-like sheet of connective tissue that attaches
a skeletal muscle to another skeletal muscle or to a bone

depolarize
to reduce the voltage difference between the inside and
outside of a cell’s plasma membrane (the sarcolemma for
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a muscle fiber), making the inside less negative than at
rest

endomysium
loose, and well-hydrated connective tissue covering each
muscle fiber in a skeletal muscle

epimysium
outer layer of connective tissue around a skeletal muscle

excitation-contraction coupling
sequence of events from motor neuron signaling to a
skeletal muscle fiber to contraction of the fiber’s
sarcomeres

fascicle
bundle of muscle fibers within a skeletal muscle

motor end-plate
sarcolemma of muscle fiber at the neuromuscular
junction, with receptors for the neurotransmitter
acetylcholine

myofibril
long, cylindrical organelle that runs parallel within the
muscle fiber and contains the sarcomeres

myosin
protein that makes up most of the thick cylindrical
myofilament within a sarcomere muscle fiber

neuromuscular junction (NMJ)
synapse between the axon terminal of a motor neuron
and the section of the membrane of a muscle fiber with
receptors for the acetylcholine released by the terminal

neurotransmitter
signaling chemical released by nerve terminals that bind
to and activate receptors on target cells

perimysium
connective tissue that bundles skeletal muscle fibers into
fascicles within a skeletal muscle

sarcomere
longitudinally, repeating functional unit of skeletal muscle,
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with all of the contractile and associated proteins involved
in contraction

sarcolemma
plasma membrane of a skeletal muscle fiber

sarcoplasm
cytoplasm of a muscle cell

sarcoplasmic reticulum (SR)
specialized smooth endoplasmic reticulum, which stores,
releases, and retrieves Ca++

synaptic cleft
space between a nerve (axon) terminal and a motor end-
plate

T-tubule
projection of the sarcolemma into the interior of the cell

thick filament
the thick myosin strands and their multiple heads
projecting from the center of the sarcomere toward, but
not all to way to, the Z-discs

thin filament
thin strands of actin and its troponin-tropomyosin
complex projecting from the Z-discs toward the center of
the sarcomere

triad
the grouping of one T-tubule and two terminal cisternae

troponin
regulatory protein that binds to actin, tropomyosin, and
calcium

tropomyosin
regulatory protein that covers myosin-binding sites to
prevent actin from binding to myosin

voltage-gated sodium channels
membrane proteins that open sodium channels in
response to a sufficient voltage change, and initiate and
transmit the action potential as Na+ enters through the
channel
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Solutions

Answers for Review Questions

1. B
2. A

Answers for Critical Thinking Questions

1. Muscles would lose their integrity during
powerful movements, resulting in muscle
damage.

2. When a muscle contracts, the force of
movement is transmitted through the tendon,
which pulls on the bone to produce skeletal
movement.

3. Produce movement of the skeleton, maintain
posture and body position, support soft tissues,
encircle openings of the digestive, urinary, and
other tracts, and maintain body temperature.

4. The opening of voltage-gated sodium channels,
followed by the influx of Na+, transmits an Action
Potential after the membrane has sufficiently
depolarized. The delayed opening of potassium
channels allows K+ to exit the cell, to repolarize
the membrane.
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66. 9.3 Muscle Fiber
Contraction and
Relaxation

The sequence of events that result in the contraction of an
individual muscle fiber begins with a signal—the
neurotransmitter, ACh—from the motor neuron innervating
that fiber. The local membrane of the fiber will depolarize as
positively charged sodium ions (Na+) enter, triggering an action
potential that spreads to the rest of the membrane will
depolarize, including the T-tubules. This triggers the release of
calcium ions (Ca++) from storage in the sarcoplasmic reticulum
(SR). The Ca++ then initiates contraction, which is sustained by
ATP (Figure 1). As long as Ca++ ions remain in the sarcoplasm
to bind to troponin, which keeps the actin-binding sites
“unshielded,” and as long as ATP is available to drive the cross-
bridge cycling and the pulling of actin strands by myosin, the
muscle fiber will continue to shorten to an anatomical limit.

654 | 9.3 Muscle Fiber Contraction
and Relaxation



Figure 1. Contraction of a Muscle Fiber. A cross-bridge forms between
actin and the myosin heads triggering contraction. As long as Ca++
ions remain in the sarcoplasm to bind to troponin, and as long as ATP
is available, the muscle fiber will continue to shorten.

Muscle contraction usually stops when signaling from the
motor neuron ends, which repolarizes the sarcolemma and T-
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tubules, and closes the voltage-gated calcium channels in the
SR. Ca++ ions are then pumped back into the SR, which causes
the tropomyosin to reshield (or re-cover) the binding sites on
the actin strands. A muscle also can stop contracting when it
runs out of ATP and becomes fatigued (Figure 2).

Figure 2. Relaxation of a Muscle Fiber. Ca++ ions are pumped back
into the SR, which causes the tropomyosin to reshield the binding
sites on the actin strands. A muscle may also stop contracting when
it runs out of ATP and becomes fatigued.
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Watch this video to
learn more about the
role of calcium.

The release of calcium ions initiates muscle contractions.
Watch this video to learn more about the role of calcium. (a)
What are “T-tubules” and what is their role? (b) Please describe
how actin-binding sites are made available for cross-bridging
with myosin heads during contraction.

The molecular events of muscle fiber shortening occur within
the fiber’s sarcomeres (see Figure 3). The contraction of a
striated muscle fiber occurs as the sarcomeres, linearly
arranged within myofibrils, shorten as myosin heads pull on
the actin filaments.

The region where thick and thin filaments overlap has a
dense appearance, as there is little space between the
filaments. This zone where thin and thick filaments overlap is
very important to muscle contraction, as it is the site where
filament movement starts. Thin filaments, anchored at their
ends by the Z-discs, do not extend completely into the central
region that only contains thick filaments, anchored at their
bases at a spot called the M-line. A myofibril is composed of
many sarcomeres running along its length; thus, myofibrils
and muscle cells contract as the sarcomeres contract.
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The Sliding Filament Model of
Contraction

When signaled by a motor neuron, a skeletal muscle fiber
contracts as the thin filaments are pulled and then slide past
the thick filaments within the fiber’s sarcomeres. This process
is known as the sliding filament model of muscle contraction
(Figure 3). The sliding can only occur when myosin-binding
sites on the actin filaments are exposed by a series of steps that
begins with Ca++ entry into the sarcoplasm.

Figure 3. The Sliding Filament Model of Muscle Contraction. When a
sarcomere contracts, the Z lines move closer together, and the I band
becomes smaller. The A band stays the same width. At full
contraction, the thin and thick filaments overlap.

Tropomyosin is a protein that winds around the chains of the
actin filament and covers the myosin-binding sites to prevent
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actin from binding to myosin. Tropomyosin binds to troponin
to form a troponin-tropomyosin complex. The troponin-
tropomyosin complex prevents the myosin “heads” from
binding to the active sites on the actin microfilaments.
Troponin also has a binding site for Ca++ ions.

To initiate muscle contraction, tropomyosin has to expose the
myosin-binding site on an actin filament to allow cross-bridge
formation between the actin and myosin microfilaments. The
first step in the process of contraction is for Ca++ to bind to
troponin so that tropomyosin can slide away from the binding
sites on the actin strands. This allows the myosin heads to bind
to these exposed binding sites and form cross-bridges. The thin
filaments are then pulled by the myosin heads to slide past the
thick filaments toward the center of the sarcomere. But each
head can only pull a very short distance before it has reached
its limit and must be “re-cocked” before it can pull again, a step
that requires ATP.

ATP and Muscle Contraction

For thin filaments to continue to slide past thick filaments
during muscle contraction, myosin heads must pull the actin at
the binding sites, detach, re-cock, attach to more binding sites,
pull, detach, re-cock, etc. This repeated movement is known
as the cross-bridge cycle. This motion of the myosin heads is
similar to the oars when an individual rows a boat: The paddle
of the oars (the myosin heads) pull, are lifted from the water
(detach), repositioned (re-cocked) and then immersed again to
pull (Figure 4). Each cycle requires energy, and the action of the
myosin heads in the sarcomeres repetitively pulling on the thin
filaments also requires energy, which is provided by ATP.
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Figure 4. Skeletal Muscle Contraction. (a) The active site on actin is
exposed as calcium binds to troponin. (b) The myosin head is
attracted to actin, and myosin binds actin at its actin-binding site,
forming the cross-bridge. (c) During the power stroke, the phosphate
generated in the previous contraction cycle is released. This results in
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the myosin head pivoting toward the center of the sarcomere, after
which the attached ADP and phosphate group are released. (d) A
new molecule of ATP attaches to the myosin head, causing the
cross-bridge to detach. (e) The myosin head hydrolyzes ATP to ADP
and phosphate, which returns the myosin to the cocked position.

Cross-bridge formation occurs when the myosin head attaches
to the actin while adenosine diphosphate (ADP) and inorganic
phosphate (Pi) are still bound to myosin (Figure 4a,b). Pi is
then released, causing myosin to form a stronger attachment
to the actin, after which the myosin head moves toward the
M-line, pulling the actin along with it. As actin is pulled, the
filaments move approximately 10 nm toward the M-line. This
movement is called the power stroke, as movement of the thin
filament occurs at this step (Figure 4c). In the absence of ATP,
the myosin head will not detach from actin.

One part of the myosin head attaches to the binding site
on the actin, but the head has another binding site for ATP.
ATP binding causes the myosin head to detach from the actin
(Figure 4d). After this occurs, ATP is converted to ADP and Pi

by the intrinsic ATPase activity of myosin. The energy released
during ATP hydrolysis changes the angle of the myosin head
into a cocked position (Figure 4e). The myosin head is now in
position for further movement.

When the myosin head is cocked, myosin is in a high-energy
configuration. This energy is expended as the myosin head
moves through the power stroke, and at the end of the power
stroke, the myosin head is in a low-energy position. After the
power stroke, ADP is released; however, the formed cross-
bridge is still in place, and actin and myosin are bound
together. As long as ATP is available, it readily attaches to
myosin, the cross-bridge cycle can recur, and muscle
contraction can continue.

Note that each thick filament of roughly 300 myosin
molecules has multiple myosin heads, and many cross-bridges
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form and break continuously during muscle contraction.
Multiply this by all of the sarcomeres in one myofibril, all the
myofibrils in one muscle fiber, and all of the muscle fibers in
one skeletal muscle, and you can understand why so much
energy (ATP) is needed to keep skeletal muscles working. In
fact, it is the loss of ATP that results in the rigor mortis observed
soon after someone dies. With no further ATP production
possible, there is no ATP available for myosin heads to detach
from the actin-binding sites, so the cross-bridges stay in place,
causing the rigidity in the skeletal muscles.

Sources of ATP

ATP supplies the energy for muscle contraction to take place.
In addition to its direct role in the cross-bridge cycle, ATP also
provides the energy for the active-transport Ca++ pumps in
the SR. Muscle contraction does not occur without sufficient
amounts of ATP. The amount of ATP stored in muscle is very
low, only sufficient to power a few seconds worth of
contractions. As it is broken down, ATP must therefore be
regenerated and replaced quickly to allow for sustained
contraction. There are three mechanisms by which ATP can
be regenerated: creatine phosphate metabolism, anaerobic
glycolysis, fermentation and aerobic respiration.

Creatine phosphate is a molecule that can store energy in
its phosphate bonds. In a resting muscle, excess ATP transfers
its energy to creatine, producing ADP and creatine phosphate.
This acts as an energy reserve that can be used to quickly
create more ATP. When the muscle starts to contract and
needs energy, creatine phosphate transfers its phosphate back
to ADP to form ATP and creatine. This reaction is catalyzed
by the enzyme creatine kinase and occurs very quickly; thus,
creatine phosphate-derived ATP powers the first few seconds
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of muscle contraction. However, creatine phosphate can only
provide approximately 15 seconds worth of energy, at which
point another energy source has to be used (Figure 5).

Figure 5. Muscle Metabolism. (a) Some ATP is stored in a resting
muscle. As contraction starts, it is used up in seconds. More ATP is
generated from creatine phosphate for about 15 seconds. (b) Each
glucose molecule produces two ATP and two molecules of pyruvic
acid, which can be used in aerobic respiration or converted to lactic
acid. If oxygen is not available, pyruvic acid is converted to lactic acid,
which may contribute to muscle fatigue. This occurs during strenuous
exercise when high amounts of energy are needed but oxygen
cannot be sufficiently delivered to muscle. (c) Aerobic respiration is
the breakdown of glucose in the presence of oxygen (O2) to produce
carbon dioxide, water, and ATP. Approximately 95 percent of the ATP
required for resting or moderately active muscles is provided by
aerobic respiration, which takes place in mitochondria.
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As the ATP produced by creatine phosphate is depleted,
muscles turn to glycolysis as an ATP source. Glycolysis is an
anaerobic (non-oxygen-dependent) process that breaks down
glucose (sugar) to produce ATP; however, glycolysis cannot
generate ATP as quickly as creatine phosphate. Thus, the
switch to glycolysis results in a slower rate of ATP availability
to the muscle. The sugar used in glycolysis can be provided by
blood glucose or by metabolizing glycogen that is stored in the
muscle. The breakdown of one glucose molecule produces two
ATP and two molecules of pyruvic acid, which can be used in
aerobic respiration or when oxygen levels are low, converted to
lactic acid (Figure 5b).

If oxygen is available, pyruvic acid is used in aerobic
respiration. However, if oxygen is not available, pyruvic acid
is converted to lactic acid, which may contribute to muscle
fatigue. This conversion allows the recycling of the enzyme
NAD+ from NADH, which is needed for glycolysis to continue.
This occurs during strenuous exercise when high amounts of
energy are needed but oxygen cannot be sufficiently delivered
to muscle. Glycolysis itself cannot be sustained for very long
(approximately 1 minute of muscle activity), but it is useful in
facilitating short bursts of high-intensity output. This is
because glycolysis does not utilize glucose very efficiently,
producing a net gain of two ATPs per molecule of glucose, and
the end product of lactic acid, which may contribute to muscle
fatigue as it accumulates.

Aerobic respiration is the breakdown of glucose or other
nutrients in the presence of oxygen (O2) to produce carbon
dioxide, water, and ATP. Approximately 95 percent of the ATP
required for resting or moderately active muscles is provided
by aerobic respiration, which takes place in mitochondria. The
inputs for aerobic respiration include glucose circulating in the
bloodstream, pyruvic acid, and fatty acids. Aerobic respiration
is much more efficient than anaerobic glycolysis, producing
approximately 36 ATPs per molecule of glucose versus four
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from glycolysis. However, aerobic respiration cannot be
sustained without a steady supply of O2 to the skeletal muscle
and is much slower (Figure 5c). To compensate, muscles store
small amount of excess oxygen in proteins call myoglobin,
allowing for more efficient muscle contractions and less
fatigue. Aerobic training also increases the efficiency of the
circulatory system so that O2 can be supplied to the muscles
for longer periods of time.

Muscle fatigue occurs when a muscle can no longer contract
in response to signals from the nervous system. The exact
causes of muscle fatigue are not fully known, although certain
factors have been correlated with the decreased muscle
contraction that occurs during fatigue. ATP is needed for
normal muscle contraction, and as ATP reserves are reduced,
muscle function may decline. This may be more of a factor
in brief, intense muscle output rather than sustained, lower
intensity efforts. Lactic acid buildup may lower intracellular pH,
affecting enzyme and protein activity. Imbalances in Na+ and
K+ levels as a result of membrane depolarization may disrupt
Ca++ flow out of the SR. Long periods of sustained exercise may
damage the SR and the sarcolemma, resulting in impaired
Ca++ regulation.

Intense muscle activity results in an oxygen debt, which is
the amount of oxygen needed to compensate for ATP
produced without oxygen during muscle contraction. Oxygen
is required to restore ATP and creatine phosphate levels,
convert lactic acid to pyruvic acid, and, in the liver, to convert
lactic acid into glucose or glycogen. Other systems used during
exercise also require oxygen, and all of these combined
processes result in the increased breathing rate that occurs
after exercise. Until the oxygen debt has been met, oxygen
intake is elevated, even after exercise has stopped.
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Relaxation of a Skeletal Muscle

Relaxing skeletal muscle fibers, and ultimately, the skeletal
muscle, begins with the motor neuron, which stops releasing
its chemical signal, ACh, into the synapse at the NMJ. The
muscle fiber will repolarize, which closes the gates in the SR
where Ca++ was being released. ATP-driven pumps will move
Ca++ out of the sarcoplasm back into the SR. This results in the
“reshielding” of the actin-binding sites on the thin filaments.
Without the ability to form cross-bridges between the thin and
thick filaments, the muscle fiber loses its tension and relaxes.

Muscle Strength

The number of skeletal muscle fibers in a given muscle is
genetically determined and does not change. Muscle strength
is directly related to the amount of myofibrils and sarcomeres
within each fiber. Factors, such as hormones and stress (and
artificial anabolic steroids), acting on the muscle can increase
the production of sarcomeres and myofibrils within the muscle
fibers, a change called hypertrophy, which results in the
increased mass and bulk in a skeletal muscle. Likewise,
decreased use of a skeletal muscle results in atrophy, where the
number of sarcomeres and myofibrils disappear (but not the
number of muscle fibers). It is common for a limb in a cast to
show atrophied muscles when the cast is removed, and certain
diseases, such as polio, show atrophied muscles.
Disorders of the …

Muscular System
Duchenne muscular dystrophy (DMD) is a progressive

weakening of the skeletal muscles. It is one of several diseases
collectively referred to as “muscular dystrophy.” DMD is caused
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by a lack of the protein dystrophin, which helps the thin
filaments of myofibrils bind to the sarcolemma. Without
sufficient dystrophin, muscle contractions cause the
sarcolemma to tear, causing an influx of Ca++, leading to cellular
damage and muscle fiber degradation. Over time, as muscle
damage accumulates, muscle mass is lost, and greater
functional impairments develop.

DMD is an inherited disorder caused by an abnormal X
chromosome. It primarily affects males, and it is usually
diagnosed in early childhood. DMD usually first appears as
difficulty with balance and motion, and then progresses to an
inability to walk. It continues progressing upward in the body
from the lower extremities to the upper body, where it affects
the muscles responsible for breathing and circulation. It
ultimately causes death due to respiratory failure, and those
afflicted do not usually live past their 20s.

Because DMD is caused by a mutation in the gene that codes
for dystrophin, it was thought that introducing healthy
myoblasts into patients might be an effective treatment.
Myoblasts are the embryonic cells responsible for muscle
development, and ideally, they would carry healthy genes that
could produce the dystrophin needed for normal muscle
contraction. This approach has been largely unsuccessful in
humans. A recent approach has involved attempting to boost
the muscle’s production of utrophin, a protein similar to
dystrophin that may be able to assume the role of dystrophin
and prevent cellular damage from occurring.

Chapter Review

A sarcomere is the smallest contractile portion of a muscle.
Myofibrils are composed of thick and thin filaments. Thick
filaments are composed of the protein myosin; thin filaments
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are composed of the protein actin. Troponin and tropomyosin
are regulatory proteins.

Muscle contraction is described by the sliding filament
model of contraction. ACh is the neurotransmitter that binds
at the neuromuscular junction (NMJ) to trigger depolarization,
and an action potential travels along the sarcolemma to trigger
calcium release from SR. The actin sites are exposed after Ca++

enters the sarcoplasm from its SR storage to activate the
troponin-tropomyosin complex so that the tropomyosin shifts
away from the sites. The cross-bridging of myposin heads
docking into actin-binding sites is followed by the “power
stroke”—the sliding of the thin filaments by thick filaments.
The power strokes are powered by ATP. Ultimately, the
sarcomeres, myofibrils, and muscle fibers shorten to produce
movement.

Interactive Link Questions

The release of calcium ions initiates muscle contractions.
Watch this video to learn more about the role of calcium. (a)
What are “T-tubules” and what is their role? (b) Please also
describe how actin-binding sites are made available for cross-
bridging with myosin heads during contraction.

(a) The T-tubules are inward extensions of the sarcolemma that
trigger the release of Ca++ from SR during an Action Potential.
(b) Ca++ binds to tropomyosin, and this slides the tropomyosin
rods away from the binding sites.
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Review Questions

1. In relaxed muscle, the myosin-binding site on actin
is blocked by ________.

A. titin
B. troponin
C. myoglobin
D. tropomyosin

2. According to the sliding filament model, binding
sites on actin open when ________.

A. creatine phosphate levels rise
B. ATP levels rise
C. acetylcholine levels rise
D. calcium ion levels rise

3. The cell membrane of a muscle fiber is called
________.

A. myofibril
B. sarcolemma
C. sarcoplasm
D. myofilament

4. Muscle relaxation occurs when ________.

A. calcium ions are actively transported out of the
sarcoplasmic reticulum

B. calcium ions diffuse out of the sarcoplasmic
reticulum

C. calcium ions are actively transported into the
sarcoplasmic reticulum
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D. calcium ions diffuse into the sarcoplasmic
reticulum

5. During muscle contraction, the cross-bridge
detaches when ________.

A. the myosin head binds to an ADP molecule
B. the myosin head binds to an ATP molecule
C. calcium ions bind to troponin
D. calcium ions bind to actin

6. Thin and thick filaments are organized into
functional units called ________.

A. myofibrils
B. myofilaments
C. T-tubules
D. sarcomeres

Review Questions

Critical Thinking Questions

1. How would muscle contractions be affected if
skeletal muscle fibers did not have T-tubules?
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2. What causes the striated appearance of skeletal
muscle tissue?

3. How would muscle contractions be affected if ATP
was completely depleted in a muscle fiber?

Glossary

aerobic respiration
production of ATP in the presence of oxygen

ATPase
enzyme that hydrolyzes ATP to ADP

creatine phosphate
phosphagen used to store energy from ATP and transfer it
to muscle

glycolysis
anaerobic breakdown of glucose to ATP

lactic acid
product of anaerobic glycolysis

oxygen debt
amount of oxygen needed to compensate for ATP
produced without oxygen during muscle contraction

power stroke
action of myosin pulling actin inward (toward the M line)

pyruvic acid
product of glycolysis that can be used in aerobic
respiration or converted to lactic acid
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Solutions

Answers for Review Questions

1. D
2. D
3. B
4. C
5. C
6. D

Answers for Critical Thinking Questions

1. Without T-tubules, action potential conduction
into the interior of the cell would happen much
more slowly, causing delays between neural
stimulation and muscle contraction, resulting in
slower, weaker contractions.

2. Dark A bands and light I bands repeat along
myofibrils, and the alignment of myofibrils in the
cell cause the entire cell to appear striated.

3. Without ATP, the myosin heads cannot detach
from the actin-binding sites. All of the “stuck”
cross-bridges result in muscle stiffness. In a live
person, this can cause a condition like “writer’s
cramps.” In a recently dead person, it results in
rigor mortis.
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67. 9.4 Nervous System
Control of Muscle
Tension

To move an object, referred to as load, the sarcomeres in the
muscle fibers of the skeletal muscle must shorten. The force
generated by the contraction of the muscle (or shortening of
the sarcomeres) is called muscle tension. However, muscle
tension also is generated when the muscle is contracting
against a load that does not move, resulting in two main types
of skeletal muscle contractions: isotonic contractions and
isometric contractions.

In isotonic contractions, where the tension in the muscle
stays constant, a load is moved as the length of the muscle
changes (shortens). There are two types of isotonic
contractions: concentric and eccentric. A concentric
contraction involves the muscle shortening to move a load.
An example of this is the biceps brachii muscle contracting
when a hand weight is brought upward with increasing muscle
tension. As the biceps brachii contract, the angle of the elbow
joint decreases as the forearm is brought toward the body.
Here, the biceps brachii contracts as sarcomeres in its muscle
fibers are shortening and cross-bridges form; the myosin heads
pull the actin. An eccentric contraction occurs as the muscle
tension diminishes and the muscle lengthens. In this case, the
hand weight is lowered in a slow and controlled manner as the
amount of cross-bridges being activated by nervous system
stimulation decreases. In this case, as tension is released from
the biceps brachii, the angle of the elbow joint increases.
Eccentric contractions are also used for movement and
balance of the body.

9.4 Nervous System Control of
Muscle Tension | 673



An isometric contraction occurs as the muscle produces
tension without changing the angle of a skeletal joint.
Isometric contractions involve sarcomere shortening and
increasing muscle tension, but do not move a load, as the force
produced cannot overcome the resistance provided by the
load. For example, if one attempts to lift a hand weight that is
too heavy, there will be sarcomere activation and shortening
to a point, and ever-increasing muscle tension, but no change
in the angle of the elbow joint. In everyday living, isometric
contractions are active in maintaining posture and
maintaining bone and joint stability. However, holding your
head in an upright position occurs not because the muscles
cannot move the head, but because the goal is to remain
stationary and not produce movement. Most actions of the
body are the result of a combination of isotonic and isometric
contractions working together to produce a wide range of
outcomes (Figure 1).
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Figure 1. Types of Muscle Contractions. During isotonic contractions,
muscle length changes to move a load. During isometric
contractions, muscle length does not change because the load
exceeds the tension the muscle can generate.
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All of these muscle activities are under the exquisite control
of the nervous system. Neural control regulates concentric,
eccentric and isometric contractions, muscle fiber recruitment,
and muscle tone. A crucial aspect of nervous system control of
skeletal muscles is the role of motor units.

Motor Units

As you have learned, every skeletal muscle fiber must be
innervated by the axon terminal of a motor neuron in order to
contract. Each muscle fiber is innervated by only one motor
neuron. The actual group of muscle fibers in a muscle
innervated by a single motor neuron is called a motor unit. The
size of a motor unit is variable depending on the nature of the
muscle.

A small motor unit is an arrangement where a single motor
neuron supplies a small number of muscle fibers in a muscle.
Small motor units permit very fine motor control of the muscle.
The best example in humans is the small motor units of the
extraocular eye muscles that move the eyeballs. There are
thousands of muscle fibers in each muscle, but every six or
so fibers are supplied by a single motor neuron, as the axons
branch to form synaptic connections at their individual NMJs.
This allows for exquisite control of eye movements so that both
eyes can quickly focus on the same object. Small motor units
are also involved in the many fine movements of the fingers
and thumb of the hand for grasping, texting, etc.

A large motor unit is an arrangement where a single motor
neuron supplies a large number of muscle fibers in a muscle.
Large motor units are concerned with simple, or “gross,”
movements, such as powerfully extending the knee joint. The
best example is the large motor units of the thigh muscles
or back muscles, where a single motor neuron will supply
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thousands of muscle fibers in a muscle, as its axon splits into
thousands of branches.

There is a wide range of motor units within many skeletal
muscles, which gives the nervous system a wide range of
control over the muscle. The small motor units in the muscle
will have smaller, lower-threshold motor neurons that are more
excitable, firing first to their skeletal muscle fibers, which also
tend to be the smallest. Activation of these smaller motor units,
results in a relatively small degree of contractile strength
(tension) generated in the muscle. As more strength is needed,
larger motor units, with bigger, higher-threshold motor
neurons are enlisted to activate larger muscle fibers. This
increasing activation of motor units produces an increase in
muscle contraction known as recruitment. As more motor
units are recruited, the muscle contraction grows progressively
stronger. In some muscles, the largest motor units may
generate a contractile force of 50 times more than the smallest
motor units in the muscle. This allows a feather to be picked up
using the biceps brachii arm muscle with minimal force, and a
heavy weight to be lifted by the same muscle by recruiting the
largest motor units.

When necessary, the maximal number of motor units in a
muscle can be recruited simultaneously, producing the
maximum force of contraction for that muscle, but this cannot
last for very long because of the energy requirements to
sustain the contraction. To prevent complete muscle fatigue,
motor units are generally not all simultaneously active, but
instead some motor units rest while others are active, which
allows for longer muscle contractions. The nervous system uses
recruitment as a mechanism to efficiently utilize a skeletal
muscle.

The Length-Tension Range of a
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Sarcomere

When a skeletal muscle fiber contracts, myosin heads attach
to actin to form cross-bridges followed by the thin filaments
sliding over the thick filaments as the heads pull the actin, and
this results in sarcomere shortening, creating the tension of
the muscle contraction. The cross-bridges can only form where
thin and thick filaments already overlap, so that the length of
the sarcomere has a direct influence on the force generated
when the sarcomere shortens. This is called the length-tension
relationship.

The ideal length of a sarcomere to produce maximal tension
occurs at 80 percent to 120 percent of its resting length, with
100 percent being the state where the medial edges of the thin
filaments are just at the most-medial myosin heads of the thick
filaments (Figure 2). This length maximizes the overlap of actin-
binding sites and myosin heads. If a sarcomere is stretched
past this ideal length (beyond 120 percent), thick and thin
filaments do not overlap sufficiently, which results in less
tension produced. If a sarcomere is shortened beyond 80
percent, the zone of overlap is reduced with the thin filaments
jutting beyond the last of the myosin heads and shrinks the H
zone, which is normally composed of myosin tails. Eventually,
there is nowhere else for the thin filaments to go and the
amount of tension is diminished. If the muscle is stretched to
the point where thick and thin filaments do not overlap at all,
no cross-bridges can be formed, and no tension is produced
in that sarcomere. This amount of stretching does not usually
occur, as accessory proteins and connective tissue oppose
extreme stretching.
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Figure 2. The Ideal Length of a Sarcomere. Sarcomeres produce
maximal tension when thick and thin filaments overlap between
about 80 percent to 120 percent.

The Frequency of Motor Neuron
Stimulation

A single action potential from a motor neuron will produce a
single contraction in the muscle fibers of its motor unit. This
isolated contraction is called a twitch. A twitch can last for a
few milliseconds or 100 milliseconds, depending on the muscle
type. The tension produced by a single twitch can be measured
by a myogram, an instrument that measures the amount of
tension produced over time (Figure 3). Each twitch undergoes
three phases. The first phase is the latent period, during which
the action potential is being propagated along the
sarcolemma and Ca++ ions are released from the SR. This is
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the phase during which excitation and contraction are being
coupled but contraction has yet to occur. The contraction
phase occurs next. The Ca++ ions in the sarcoplasm have bound
to troponin, tropomyosin has shifted away from actin-binding
sites, cross-bridges formed, and sarcomeres are actively
shortening to the point of peak tension. The last phase is the
relaxation phase, when tension decreases as contraction stops.
Ca++ ions are pumped out of the sarcoplasm into the SR, and
cross-bridge cycling stops, returning the muscle fibers to their
resting state.

Figure 3. A Myogram of a Muscle Twitch. A single muscle twitch has a
latent period, a contraction phase when tension increases, and a
relaxation phase when tension decreases. During the latent period,
the action potential is being propagated along the sarcolemma.
During the contraction phase, Ca++ ions in the sarcoplasm bind to
troponin, tropomyosin moves from actin-binding sites, cross-bridges
form, and sarcomeres shorten. During the relaxation phase, tension
decreases as Ca++ ions are pumped out of the sarcoplasm and
cross-bridge cycling stops.

Although a person can experience a muscle “twitch,” a single
twitch does not produce any significant muscle activity in a
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living body. A series of action potentials to the muscle fibers is
necessary to produce a muscle contraction that can produce
work. Normal muscle contraction is more sustained, and it can
be modified by input from the nervous system to produce
varying amounts of force; this is called a graded muscle
response. The frequency of action potentials (nerve impulses)
from a motor neuron and the number of motor neurons
transmitting action potentials both affect the tension
produced in skeletal muscle.

The rate at which a motor neuron fires action potentials
affects the tension produced in the skeletal muscle. If the fibers
are stimulated while a previous twitch is still occurring, the
second twitch will be stronger. This response is called wave
summation, because the excitation-contraction coupling
effects of successive motor neuron signaling is summed, or
added together (Figure 4a). At the molecular level, summation
occurs because the second stimulus triggers the release of
more Ca++ ions, which become available to activate additional
sarcomeres while the muscle is still contracting from the first
stimulus. Summation results in greater contraction of the
motor unit.

Figure 4. Wave Summation and Tetanus. (a) The
excitation-contraction coupling effects of successive motor neuron
signaling is added together which is referred to as wave summation.
The bottom of each wave, the end of the relaxation phase, represents
the point of stimulus. (b) When the stimulus frequency is so high that
the relaxation phase disappears completely, the contractions
become continuous; this is called tetanus.
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If the frequency of motor neuron signaling increases,
summation and subsequent muscle tension in the motor unit
continues to rise until it reaches a peak point. The tension at
this point is about three to four times greater than the tension
of a single twitch, a state referred to as incomplete tetanus.
During incomplete tetanus, the muscle goes through quick
cycles of contraction with a short relaxation phase for each.
If the stimulus frequency is so high that the relaxation phase
disappears completely, contractions become continuous in a
process called complete tetanus (Figure 4b).

During tetanus, the concentration of Ca++ ions in the
sarcoplasm allows virtually all of the sarcomeres to form cross-
bridges and shorten, so that a contraction can continue
uninterrupted (until the muscle fatigues and can no longer
produce tension).

Treppe

When a skeletal muscle has been dormant for an extended
period and then activated to contract, with all other things
being equal, the initial contractions generate about one-half
the force of later contractions. The muscle tension increases in
a graded manner that to some looks like a set of stairs. This
tension increase is called treppe, a condition where muscle
contractions become more efficient. It’s also known as the
“staircase effect” (Figure 5).
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Figure 5. Treppe. When muscle tension increases in
a graded manner that looks like a set of stairs, it is
called treppe. The bottom of each wave represents
the point of stimulus.

It is believed that treppe results from a higher concentration
of Ca++ in the sarcoplasm resulting from the steady stream of
signals from the motor neuron. It can only be maintained with
adequate ATP.

Muscle Tone

Skeletal muscles are rarely completely relaxed, or flaccid. Even
if a muscle is not producing movement, it is contracted a small
amount to maintain its contractile proteins and produce
muscle tone. The tension produced by muscle tone allows
muscles to continually stabilize joints and maintain posture.

Muscle tone is accomplished by a complex interaction
between the nervous system and skeletal muscles that results
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in the activation of a few motor units at a time, most likely
in a cyclical manner. In this manner, muscles never fatigue
completely, as some motor units can recover while others are
active.

The absence of the low-level contractions that lead to muscle
tone is referred to as hypotonia or atrophy, and can result from
damage to parts of the central nervous system (CNS), such
as the cerebellum, or from loss of innervations to a skeletal
muscle, as in poliomyelitis. Hypotonic muscles have a flaccid
appearance and display functional impairments, such as weak
reflexes. Conversely, excessive muscle tone is referred to as
hypertonia, accompanied by hyperreflexia (excessive reflex
responses), often the result of damage to upper motor neurons
in the CNS. Hypertonia can present with muscle rigidity (as
seen in Parkinson’s disease) or spasticity, a phasic change in
muscle tone, where a limb will “snap” back from passive
stretching (as seen in some strokes).

Chapter Review

The number of cross-bridges formed between actin and
myosin determines the amount of tension produced by a
muscle. The length of a sarcomere is optimal when the zone of
overlap between thin and thick filaments is greatest. Muscles
that are stretched or compressed too greatly do not produce
maximal amounts of power. A motor unit is formed by a motor
neuron and all of the muscle fibers that are innervated by that
same motor neuron. A single contraction is called a twitch. A
muscle twitch has a latent period, a contraction phase, and a
relaxation phase. A graded muscle response allows variation in
muscle tension. Summation occurs as successive stimuli are
added together to produce a stronger muscle contraction.
Tetanus is the fusion of contractions to produce a continuous
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contraction. Increasing the number of motor neurons involved
increases the amount of motor units activated in a muscle,
which is called recruitment. Muscle tone is the constant low-
level contractions that allow for posture and stability.

Review Questions

1. During which phase of a twitch in a muscle fiber is
tension the greatest?

A. resting phase
B. repolarization phase
C. contraction phase
D. relaxation phase

Exercises

1. Why does a motor unit of the eye have few muscle
fibers compared to a motor unit of the leg?

2. What factors contribute to the amount of tension
produced in an individual muscle fiber?

Glossary

concentric contraction
muscle contraction that shortens the muscle to move a
load
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contraction phase
twitch contraction phase when tension increases

eccentric contraction
muscle contraction that lengthens the muscle as the
tension is diminished

graded muscle response
modification of contraction strength

hypertonia
abnormally high muscle tone

hypotonia
abnormally low muscle tone caused by the absence of
low-level contractions

isometric contraction
muscle contraction that occurs with no change in muscle
length

isotonic contraction
muscle contraction that involves changes in muscle
length

latent period
the time when a twitch does not produce contraction

motor unit
motor neuron and the group of muscle fibers it innervates

muscle tension
force generated by the contraction of the muscle; tension
generated during isotonic contractions and isometric
contractions

muscle tone
low levels of muscle contraction that occur when a muscle
is not producing movement

myogram
instrument used to measure twitch tension

recruitment
increase in the number of motor units involved in
contraction
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relaxation phase
period after twitch contraction when tension decreases

tetanus
a continuous fused contraction

treppe
stepwise increase in contraction tension

twitch
single contraction produced by one action potential

wave summation
addition of successive neural stimuli to produce greater
contraction

Solutions

Answers for Review Questions

1. C

Answers for Critical Thinking Questions

1. Eyes require fine movements and a high
degree of control, which is permitted by having
fewer muscle fibers associated with a neuron.

2. The length, size and types of muscle fiber and
the frequency of neural stimulation contribute to
the amount of tension produced in an individual
muscle fiber.
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68. 9.5 Types of Muscle
Fibers

Two criteria to consider when classifying the types of muscle
fibers are how fast some fibers contract relative to others, and
how fibers produce ATP. Using these criteria, there are three
main types of skeletal muscle fibers. Slow oxidative (SO) fibers
contract relatively slowly and use aerobic respiration (oxygen
and glucose) to produce ATP. Fast oxidative (FO) fibers have
fast contractions and primarily use aerobic respiration, but
because they may switch to anaerobic respiration (glycolysis),
can fatigue more quickly than SO fibers. Lastly, fast glycolytic
(FG) fibers have fast contractions and primarily use anaerobic
glycolysis. The FG fibers fatigue more quickly than the others.
Most skeletal muscles in a human contain(s) all three types,
although in varying proportions.

The speed of contraction is dependent on how quickly
myosin’s ATPase hydrolyzes ATP to produce cross-bridge
action. Fast fibers hydrolyze ATP approximately twice as quickly
as slow fibers, resulting in much quicker cross-bridge cycling
(which pulls the thin filaments toward the center of the
sarcomeres at a faster rate). The primary metabolic pathway
used by a muscle fiber determines whether the fiber is
classified as oxidative or glycolytic. If a fiber primarily produces
ATP through aerobic pathways it is oxidative. More ATP can
be produced during each metabolic cycle, making the fiber
more resistant to fatigue. Glycolytic fibers primarily create ATP
through anaerobic glycolysis, which produces less ATP per
cycle. As a result, glycolytic fibers fatigue at a quicker rate.

The oxidative fibers contain many more mitochondria than
the glycolytic fibers, because aerobic metabolism, which uses
oxygen (O2) in the metabolic pathway, occurs in the
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mitochondria. The SO fibers possess a large number of
mitochondria and are capable of contracting for longer periods
because of the large amount of ATP they can produce, but
they have a relatively small diameter and do not produce a
large amount of tension. SO fibers are extensively supplied with
blood capillaries to supply O2 from the red blood cells in the
bloodstream. The SO fibers also possess myoglobin, an
O2-carrying molecule similar to O2-carrying hemoglobin in the
red blood cells. The myoglobin stores some of the needed O2

within the fibers themselves (and gives SO fibers their red
color). All of these features allow SO fibers to produce large
quantities of ATP, which can sustain muscle activity without
fatiguing for long periods of time.

The fact that SO fibers can function for long periods without
fatiguing makes them useful in maintaining posture,
producing isometric contractions, stabilizing bones and joints,
and making small movements that happen often but do not
require large amounts of energy. They do not produce high
tension, and thus they are not used for powerful, fast
movements that require high amounts of energy and rapid
cross-bridge cycling.

FO fibers are sometimes called intermediate fibers because
they possess characteristics that are intermediate between fast
fibers and slow fibers. They produce ATP relatively quickly,
more quickly than SO fibers, and thus can produce relatively
high amounts of tension. They are oxidative because they
produce ATP aerobically, possess high amounts of
mitochondria, and do not fatigue quickly. However, FO fibers
do not possess significant myoglobin, giving them a lighter
color than the red SO fibers. FO fibers are used primarily for
movements, such as walking, that require more energy than
postural control but less energy than an explosive movement,
such as sprinting. FO fibers are useful for this type of
movement because they produce more tension than SO fibers
but they are more fatigue-resistant than FG fibers.
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FG fibers primarily use anaerobic glycolysis as their ATP
source. They have a large diameter and possess high amounts
of glycogen, which is used in glycolysis to generate ATP quickly
to produce high levels of tension. Because they do not primarily
use aerobic metabolism, they do not possess substantial
numbers of mitochondria or significant amounts of myoglobin
and therefore have a white color. FG fibers are used to produce
rapid, forceful contractions to make quick, powerful
movements. These fibers fatigue quickly, permitting them to
only be used for short periods. Most muscles possess a mixture
of each fiber type. The predominant fiber type in a muscle is
determined by the primary function of the muscle.

Chapter Review

ATP provides the energy for muscle contraction. The three
mechanisms for ATP regeneration are creatine phosphate,
anaerobic glycolysis, and aerobic metabolism. Creatine
phosphate provides about the first 15 seconds of ATP at the
beginning of muscle contraction. Anaerobic glycolysis
produces small amounts of ATP in the absence of oxygen for
a short period. Aerobic metabolism utilizes oxygen to produce
much more ATP, allowing a muscle to work for longer periods.
Muscle fatigue, which has many contributing factors, occurs
when muscle can no longer contract. An oxygen debt is
created as a result of muscle use. The three types of muscle
fiber are slow oxidative (SO), fast oxidative (FO) and fast
glycolytic (FG). SO fibers use aerobic metabolism to produce
low power contractions over long periods and are slow to
fatigue. FO fibers use aerobic metabolism to produce ATP but
produce higher tension contractions than SO fibers. FG fibers
use anaerobic metabolism to produce powerful, high-tension
contractions but fatigue quickly.
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Review Questions

1. Muscle fatigue is caused by ________.

A. buildup of ATP and lactic acid levels
B. exhaustion of energy reserves and buildup of

lactic acid levels
C. buildup of ATP and pyruvic acid levels
D. exhaustion of energy reserves and buildup of

pyruvic acid levels

2. A sprinter would experience muscle fatigue sooner
than a marathon runner due to ________.

A. anaerobic metabolism in the muscles of the
sprinter

B. anaerobic metabolism in the muscles of the
marathon runner

C. aerobic metabolism in the muscles of the
sprinter

D. glycolysis in the muscles of the marathon
runner

3. What aspect of creatine phosphate allows it to
supply energy to muscles?

A. ATPase activity
B. phosphate bonds
C. carbon bonds
D. hydrogen bonds

4. Drug X blocks ATP regeneration from ADP and
phosphate. How will muscle cells respond to this drug?
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A. by absorbing ATP from the bloodstream
B. by using ADP as an energy source
C. by using glycogen as an energy source
D. none of the above

Critical Thinking Questions

1. Why do muscle cells use creatine phosphate
instead of glycolysis to supply ATP for the first few
seconds of muscle contraction?

2. Is aerobic respiration more or less efficient than
glycolysis? Explain your answer.

Glossary

fast glycolytic (FG)
muscle fiber that primarily uses anaerobic glycolysis

fast oxidative (FO)
intermediate muscle fiber that is between slow oxidative
and fast glycolytic fibers

slow oxidative (SO)
muscle fiber that primarily uses aerobic respiration
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Solutions

Answers for Review Questions

1. B
2. A
3. B
4. D

Answers for Critical Thinking Questions

1. Creatine phosphate is used because creatine
phosphate and ADP are converted very quickly
into ATP by creatine kinase. Glycolysis cannot
generate ATP as quickly as creatine phosphate.

2. Aerobic respiration is much more efficient than
anaerobic glycolysis, yielding 36 ATP per molecule
of glucose, as opposed to two ATP produced by
glycolysis.
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69. 9.6 Exercise and
Muscle Performance

Physical training alters the appearance of skeletal muscles and
can produce changes in muscle performance. Conversely, a
lack of use can result in decreased performance and muscle
appearance. Although muscle cells can change in size, new
cells are not formed when muscles grow. Instead, structural
proteins are added to muscle fibers in a process called
hypertrophy, so cell diameter increases. The reverse, when
structural proteins are lost and muscle mass decreases, is
called atrophy. Age-related muscle atrophy is called
sarcopenia. Cellular components of muscles can also undergo
changes in response to changes in muscle use.

Endurance Exercise

Slow fibers are predominantly used in endurance exercises
that require little force but involve numerous repetitions. The
aerobic metabolism used by slow-twitch fibers allows them to
maintain contractions over long periods. Endurance training
modifies these slow fibers to make them even more efficient
by producing more mitochondria to enable more aerobic
metabolism and more ATP production. Endurance exercise can
also increase the amount of myoglobin in a cell, as increased
aerobic respiration increases the need for oxygen. Myoglobin is
found in the sarcoplasm and acts as an oxygen storage supply
for the mitochondria.

The training can trigger the formation of more extensive
capillary networks around the fiber, a process called
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angiogenesis, to supply oxygen and remove metabolic waste.
To allow these capillary networks to supply the deep portions of
the muscle, muscle mass does not greatly increase in order to
maintain a smaller area for the diffusion of nutrients and gases.
All of these cellular changes result in the ability to sustain low
levels of muscle contractions for greater periods without
fatiguing.

The proportion of SO muscle fibers in muscle determines the
suitability of that muscle for endurance, and may benefit those
participating in endurance activities. Postural muscles have a
large number of SO fibers and relatively few FO and FG fibers,
to keep the back straight (Figure 1). Endurance athletes, like
marathon-runners also would benefit from a larger proportion
of SO fibers, but it is unclear if the most-successful
marathoners are those with naturally high numbers of SO
fibers, or whether the most successful marathon runners
develop high numbers of SO fibers with repetitive training.
Endurance training can result in overuse injuries such as stress
fractures and joint and tendon inflammation.
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Figure 1. Marathoners. Long-distance runners have a large number of
SO fibers and relatively few FO and FG fibers. (credit:
“Tseo2”/Wikimedia Commons)

Resistance Exercise

Resistance exercises, as opposed to endurance exercise,
require large amounts of FG fibers to produce short, powerful
movements that are not repeated over long periods. The high
rates of ATP hydrolysis and cross-bridge formation in FG fibers
result in powerful muscle contractions. Muscles used for power
have a higher ratio of FG to SO/FO fibers, and trained athletes
possess even higher levels of FG fibers in their muscles.
Resistance exercise affects muscles by increasing the
formation of myofibrils, thereby increasing the thickness of
muscle fibers. This added structure causes hypertrophy, or the
enlargement of muscles, exemplified by the large skeletal
muscles seen in body builders and other athletes (Figure 2).
Because this muscular enlargement is achieved by the
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addition of structural proteins, athletes trying to build muscle
mass often ingest large amounts of protein.

Figure 2. Hypertrophy. Body builders have a large number of FG
fibers and relatively few FO and SO fibers. (credit: Lin Mei/flickr)

Except for the hypertrophy that follows an increase in the
number of sarcomeres and myofibrils in a skeletal muscle, the
cellular changes observed during endurance training do not
usually occur with resistance training. There is usually no
significant increase in mitochondria or capillary density.
However, resistance training does increase the development of
connective tissue, which adds to the overall mass of the muscle
and helps to contain muscles as they produce increasingly
powerful contractions. Tendons also become stronger to
prevent tendon damage, as the force produced by muscles is
transferred to tendons that attach the muscle to bone.

For effective strength training, the intensity of the exercise
must continually be increased. For instance, continued weight
lifting without increasing the weight of the load does not
increase muscle size. To produce ever-greater results, the
weights lifted must become increasingly heavier, making it
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more difficult for muscles to move the load. The muscle then
adapts to this heavier load, and an even heavier load must be
used if even greater muscle mass is desired.

If done improperly, resistance training can lead to overuse
injuries of the muscle, tendon, or bone. These injuries can occur
if the load is too heavy or if the muscles are not given sufficient
time between workouts to recover or if joints are not aligned
properly during the exercises. Cellular damage to muscle fibers
that occurs after intense exercise includes damage to the
sarcolemma and myofibrils. This muscle damage contributes
to the feeling of soreness after strenuous exercise, but muscles
gain mass as this damage is repaired, and additional structural
proteins are added to replace the damaged ones. Overworking
skeletal muscles can also lead to tendon damage and even
skeletal damage if the load is too great for the muscles to bear.

Performance-Enhancing Substances

Some athletes attempt to boost their performance by using
various agents that may enhance muscle performance.
Anabolic steroids are one of the more widely known agents
used to boost muscle mass and increase power output.
Anabolic steroids are a form of testosterone, a male sex
hormone that stimulates muscle formation, leading to
increased muscle mass.

Endurance athletes may also try to boost the availability of
oxygen to muscles to increase aerobic respiration by using
substances such as erythropoietin (EPO), a hormone normally
produced in the kidneys, which triggers the production of red
blood cells. The extra oxygen carried by these blood cells can
then be used by muscles for aerobic respiration. Human
growth hormone (hGH) is another supplement, and although it
can facilitate building muscle mass, its main role is to promote
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the healing of muscle and other tissues after strenuous
exercise. Increased hGH may allow for faster recovery after
muscle damage, reducing the rest required after exercise, and
allowing for more sustained high-level performance.

Although performance-enhancing substances often do
improve performance, most are banned by governing bodies
in sports and are illegal for nonmedical purposes. Their use to
enhance performance raises ethical issues of cheating because
they give users an unfair advantage over nonusers. A greater
concern, however, is that their use carries serious health risks.
The side effects of these substances are often significant,
nonreversible, and in some cases fatal. The physiological strain
caused by these substances is often greater than what the
body can handle, leading to effects that are unpredictable and
dangerous. Anabolic steroid use has been linked to infertility,
aggressive behavior, cardiovascular disease, and brain cancer.

Similarly, some athletes have used creatine to increase power
output. Creatine phosphate provides quick bursts of ATP to
muscles in the initial stages of contraction. Increasing the
amount of creatine available to cells is thought to produce
more ATP and therefore increase explosive power output,
although its effectiveness as a supplement has been
questioned.
Everyday Connection

Aging and Muscle Tissue
Although atrophy due to disuse can often be reversed with
exercise, muscle atrophy with age, referred to as sarcopenia, is
irreversible. This is a primary reason why even highly trained
athletes succumb to declining performance with age. This
decline is noticeable in athletes whose sports require strength
and powerful movements, such as sprinting, whereas the
effects of age are less noticeable in endurance athletes such
as marathon runners or long-distance cyclists. As muscles age,
muscle fibers die, and they are replaced by connective tissue
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and adipose tissue (Figure 3). Because those tissues cannot
contract and generate force as muscle can, muscles lose the
ability to produce powerful contractions. The decline in muscle
mass causes a loss of strength, including the strength required
for posture and mobility. This may be caused by a reduction in
FG fibers that hydrolyze ATP quickly to produce short, powerful
contractions. Muscles in older people sometimes possess
greater numbers of SO fibers, which are responsible for longer
contractions and do not produce powerful movements. There
may also be a reduction in the size of motor units, resulting in
fewer fibers being stimulated and less muscle tension being
produced.

Figure 3. Atrophy. Muscle mass is reduced as muscles
atrophy with disuse.

Sarcopenia can be delayed to some extent by exercise, as
training adds structural proteins and causes cellular changes
that can offset the effects of atrophy. Increased exercise can
produce greater numbers of cellular mitochondria, increase
capillary density, and increase the mass and strength of
connective tissue. The effects of age-related atrophy are
especially pronounced in people who are sedentary, as the loss
of muscle cells is displayed as functional impairments such as
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trouble with locomotion, balance, and posture. This can lead to
a decrease in quality of life and medical problems, such as joint
problems because the muscles that stabilize bones and joints
are weakened. Problems with locomotion and balance can also
cause various injuries due to falls.

Chapter Review

Hypertrophy is an increase in muscle mass due to the addition
of structural proteins. The opposite of hypertrophy is atrophy,
the loss of muscle mass due to the breakdown of structural
proteins. Endurance exercise causes an increase in cellular
mitochondria, myoglobin, and capillary networks in SO fibers.
Endurance athletes have a high level of SO fibers relative to
the other fiber types. Resistance exercise causes hypertrophy.
Power-producing muscles have a higher number of FG fibers
than of slow fibers. Strenuous exercise causes muscle cell
damage that requires time to heal. Some athletes use
performance-enhancing substances to enhance muscle
performance. Muscle atrophy due to age is called sarcopenia
and occurs as muscle fibers die and are replaced by connective
and adipose tissue.

Review Questions

1. The muscles of a professional sprinter are most
likely to have ________.

A. 80 percent fast-twitch muscle fibers and 20
percent slow-twitch muscle fibers
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B. 20 percent fast-twitch muscle fibers and 80
percent slow-twitch muscle fibers

C. 50 percent fast-twitch muscle fibers and 50
percent slow-twitch muscle fibers

D. 40 percent fast-twitch muscle fibers and 60
percent slow-twitch muscle fibers

2. The muscles of a professional marathon runner are
most likely to have ________.

A. 80 percent fast-twitch muscle fibers and 20
percent slow-twitch muscle fibers

B. 20 percent fast-twitch muscle fibers and 80
percent slow-twitch muscle fibers

C. 50 percent fast-twitch muscle fibers and 50
percent slow-twitch muscle fibers

D. 40 percent fast-twitch muscle fibers and 60
percent slow-twitch muscle fibers

3. Which of the following statements is true?

A. Fast fibers have a small diameter.
B. Fast fibers contain loosely packed myofibrils.
C. Fast fibers have large glycogen reserves.
D. Fast fibers have many mitochondria.

4. Which of the following statements is false?

A. Slow fibers have a small network of capillaries.
B. Slow fibers contain the pigment myoglobin.
C. Slow fibers contain a large number of

mitochondria.
D. Slow fibers contract for extended periods.
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Critical Thinking Questions

1. What changes occur at the cellular level in
response to endurance training?<

2. What changes occur at the cellular level in
response to resistance training?

Glossary

angiogenesis
formation of blood capillary networks

atrophy
loss of structural proteins from muscle fibers

hypertrophy
addition of structural proteins to muscle fibers

sarcopenia
age-related muscle atrophy

Solutions

Answers for Review Questions

1. A
2. B
3. C
4. A
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Answers for Critical Thinking Questions

1. Endurance training modifies slow fibers to
make them more efficient by producing more
mitochondria to enable more aerobic metabolism
and more ATP production. Endurance exercise
can also increase the amount of myoglobin in a
cell and formation of more extensive capillary
networks around the fiber.

2. Resistance exercises affect muscles by causing
the formation of more actin and myosin,
increasing the structure of muscle fibers.
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70. 9.7 Interactions of
Skeletal Muscles, Their
Fascicle Arrangement,
and Their Lever
Systems

To move the skeleton, the tension created by the contraction
of the fibers in most skeletal muscles is transferred to the
tendons. The tendons are strong bands of dense, regular
connective tissue that connect muscles to bones. The bone
connection is why this muscle tissue is called skeletal muscle.

Interactions of Skeletal Muscles in the
Body

To pull on a bone, that is, to change the angle at its synovial
joint, which essentially moves the skeleton, a skeletal muscle
must also be attached to a fixed part of the skeleton. The
moveable end of the muscle that attaches to the bone being
pulled is called the muscle’s insertion, and the end of the
muscle attached to a fixed (stabilized) bone is called the origin.
During forearm flexion—bending the elbow—the
brachioradialis assists the brachialis.

Although a number of muscles may be involved in an action,
the principal muscle involved is called the prime mover, or
agonist. To lift a cup, a muscle called the biceps brachii is
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actually the prime mover; however, because it can be assisted
by the brachialis, the brachialis is called a synergist in this
action (Figure 1). A synergist can also be a fixator that stabilizes
the bone that is the attachment for the prime mover’s origin.

Figure 1. Prime Movers and Synergists. The biceps brachii flex the
lower arm. The brachoradialis, in the forearm, and brachialis, located
deep to the biceps in the upper arm, are both synergists that aid in
this motion.

A muscle with the opposite action of the prime mover is called
an antagonist. Antagonists play two important roles in muscle
function: (1) they maintain body or limb position, such as
holding the arm out or standing erect; and (2) they control
rapid movement, as in shadow boxing without landing a punch
or the ability to check the motion of a limb.

For example, to extend the knee, a group of four muscles
called the quadriceps femoris in the anterior compartment of
the thigh are activated (and would be called the agonists of
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knee extension). However, to flex the knee joint, an opposite or
antagonistic set of muscles called the hamstrings is activated.

As you can see, these terms would also be reversed for the
opposing action. If you consider the first action as the knee
bending, the hamstrings would be called the agonists and the
quadriceps femoris would then be called the antagonists. See
Table 1 for a list of some agonists and antagonists.

Agonist and Antagonist Skeletal Muscle Pairs (Table 1)

Agonist Antagonist Movement

Biceps brachii: in
the anterior
compartment of
the arm

Triceps
brachii: in the
posterior
compartment
of the arm

The biceps brachii flexes the
forearm, whereas the triceps
brachii extends it.

Hamstrings:
group of three
muscles in the
posterior
compartment of
the thigh

Quadriceps
femoris:
group of four
muscles in
the anterior
compartment
of the thigh

The hamstrings flex the leg,
whereas the quadriceps femoris
extend it.

Flexor digitorum
superficialis and
flexor digitorum
profundus: in the
anterior
compartment of
the forearm

Extensor
digitorum: in
the posterior
compartment
of the
forearm

The flexor digitorum
superficialis and flexor
digitorum profundus flex the
fingers and the hand at the
wrist, whereas the extensor
digitorum extends the fingers
and the hand at the wrist.

There are also skeletal muscles that do not pull against the
skeleton for movements. For example, there are the muscles
that produce facial expressions. The insertions and origins of
facial muscles are in the skin, so that certain individual muscles
contract to form a smile or frown, form sounds or words, and
raise the eyebrows. There also are skeletal muscles in the
tongue, and the external urinary and anal sphincters that allow
for voluntary regulation of urination and defecation,
respectively. In addition, the diaphragm contracts and relaxes
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to change the volume of the pleural cavities but it does not
move the skeleton to do this.
Everyday Connections

Exercise and Stretching
When exercising, it is important to first warm up the muscles.
Stretching pulls on the muscle fibers and it also results in an
increased blood flow to the muscles being worked. Without
a proper warm-up, it is possible that you may either damage
some of the muscle fibers or pull a tendon. A pulled tendon,
regardless of location, results in pain, swelling, and diminished
function; if it is moderate to severe, the injury could immobilize
you for an extended period.

Recall the discussion about muscles crossing joints to create
movement. Most of the joints you use during exercise are
synovial joints, which have synovial fluid in the joint space
between two bones. Exercise and stretching may also have
a beneficial effect on synovial joints. Synovial fluid is a thin,
but viscous film with the consistency of egg whites. When
you first get up and start moving, your joints feel stiff for a
number of reasons. After proper stretching and warm-up, the
synovial fluid may become less viscous, allowing for better joint
function.

Patterns of Fascicle Organization

Skeletal muscle is enclosed in connective tissue scaffolding at
three levels. Each muscle fiber (cell) is covered by endomysium
and the entire muscle is covered by epimysium. When a group
of muscle fibers is “bundled” as a unit within the whole muscle
by an additional covering of a connective tissue called
perimysium, that bundled group of muscle fibers is called a
fascicle. Fascicle arrangement by perimysia is correlated to the
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force generated by a muscle; it also affects the range of motion
of the muscle. Based on the patterns of fascicle arrangement,
skeletal muscles can be classified in several ways. What follows
are the most common fascicle arrangements.

Parallel muscles have fascicles that are arranged in the same
direction as the long axis of the muscle (Figure 2). The majority
of skeletal muscles in the body have this type of organization.
Some parallel muscles are flat sheets that expand at the ends
to make broad attachments. Other parallel muscles are rotund
with tendons at one or both ends. Muscles that seem to be
plump have a large mass of tissue located in the middle of the
muscle, between the insertion and the origin, which is known
as the central body. A more common name for this muscle is
belly. When a muscle contracts, the contractile fibers shorten it
to an even larger bulge. For example, extend and then flex your
biceps brachii muscle; the large, middle section is the belly
(Figure 3). When a parallel muscle has a central, large belly that
is spindle-shaped, meaning it tapers as it extends to its origin
and insertion, it sometimes is called fusiform.
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Figure 2. Muscle Shapes and Fiber Alignment. The skeletal muscles of
the body typically come in seven different general shapes.
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Figure 3. Biceps Brachii Muscle Contraction. The large mass at the
center of a muscle is called the belly. Tendons emerge from both ends
of the belly and connect the muscle to the bones, allowing the
skeleton to move. The tendons of the bicep connect to the upper arm
and the forearm. (credit: Victoria Garcia)

Circular muscles are also called sphincters (see Figure 2). When
they relax, the sphincters’ concentrically arranged bundles of
muscle fibers increase the size of the opening, and when they
contract, the size of the opening shrinks to the point of closure.
The orbicularis oris muscle is a circular muscle that goes
around the mouth. When it contracts, the oral opening
becomes smaller, as when puckering the lips for whistling.
Another example is the orbicularis oculi, one of which
surrounds each eye. Consider, for example, the names of the
two orbicularis muscles (orbicularis oris and oribicularis oculi),
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where part of the first name of both muscles is the same. The
first part of orbicularis, orb (orb = “circular”), is a reference to a
round or circular structure; it may also make one think of orbit,
such as the moon’s path around the earth. The word oris (oris
= “oral”) refers to the oral cavity, or the mouth. The word oculi
(ocular = “eye”) refers to the eye.

There are other muscles throughout the body named by
their shape or location. The deltoid is a large, triangular-shaped
muscle that covers the shoulder. It is so-named because the
Greek letter delta looks like a triangle. The rectus abdomis
(rector = “straight”) is the straight muscle in the anterior wall of
the abdomen, while the rectus femoris is the straight muscle in
the anterior compartment of the thigh.

When a muscle has a widespread expansion over a sizable
area, but then the fascicles come to a single, common
attachment point, the muscle is called convergent. The
attachment point for a convergent muscle could be a tendon,
an aponeurosis (a flat, broad tendon), or a raphe (a very slender
tendon). The large muscle on the chest, the pectoralis major,
is an example of a convergent muscle because it converges
on the greater tubercle of the humerus via a tendon. The
temporalis muscle of the cranium is another.

Pennate muscles (penna = “feathers”) blend into a tendon
that runs through the central region of the muscle for its whole
length, somewhat like the quill of a feather with the muscle
arranged similar to the feathers. Due to this design, the muscle
fibers in a pennate muscle can only pull at an angle, and as a
result, contracting pennate muscles do not move their tendons
very far. However, because a pennate muscle generally can
hold more muscle fibers within it, it can produce relatively
more tension for its size. There are three subtypes of pennate
muscles.

In a unipennate muscle, the fascicles are located on one
side of the tendon. The extensor digitorum of the forearm is
an example of a unipennate muscle. A bipennate muscle has
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fascicles on both sides of the tendon. In some pennate
muscles, the muscle fibers wrap around the tendon,
sometimes forming individual fascicles in the process. This
arrangement is referred to as multipennate. A common
example is the deltoid muscle of the shoulder, which covers the
shoulder but has a single tendon that inserts on the deltoid
tuberosity of the humerus.

Because of fascicles, a portion of a multipennate muscle like
the deltoid can be stimulated by the nervous system to change
the direction of the pull. For example, when the deltoid muscle
contracts, the arm abducts (moves away from midline in the
sagittal plane), but when only the anterior fascicle is
stimulated, the arm will abduct and flex (move anteriorly at the
shoulder joint).

The Lever System of Muscle and Bone
Interactions

Skeletal muscles do not work by themselves. Muscles are
arranged in pairs based on their functions. For muscles
attached to the bones of the skeleton, the connection
determines the force, speed, and range of movement. These
characteristics depend on each other and can explain the
general organization of the muscular and skeletal systems.

The skeleton and muscles act together to move the body.
Have you ever used the back of a hammer to remove a nail
from wood? The handle acts as a lever and the head of the
hammer acts as a fulcrum, the fixed point that the force is
applied to when you pull back or push down on the handle.
The effort applied to this system is the pulling or pushing on
the handle to remove the nail, which is the load, or “resistance”
to the movement of the handle in the system. Our
musculoskeletal system works in a similar manner, with bones
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being stiff levers and the articular endings of the
bones—encased in synovial joints—acting as fulcrums. The
load would be an object being lifted or any resistance to a
movement (your head is a load when you are lifting it), and
the effort, or applied force, comes from contracting skeletal
muscle.

Chapter Review

Skeletal muscles each have an origin and an insertion. The end
of the muscle that attaches to the bone being pulled is called
the muscle’s insertion and the end of the muscle attached
to a fixed, or stabilized, bone is called the origin. The muscle
primarily responsible for a movement is called the prime
mover, and muscles that assist in this action are called
synergists. A synergist that makes the insertion site more
stable is called a fixator. Meanwhile, a muscle with the opposite
action of the prime mover is called an antagonist. Several
factors contribute to the force generated by a skeletal muscle.
One is the arrangement of the fascicles in the skeletal muscle.
Fascicles can be parallel, circular, convergent, pennate,
fusiform, or triangular. Each arrangement has its own range of
motion and ability to do work.

Review Questions

1. Which of the following is unique to the muscles of
facial expression?

A. They all originate from the scalp musculature.
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B. They insert onto the cartilage found around the
face.

C. They only insert onto the facial bones.
D. They insert into the skin.

2. Which of the following helps an agonist work?

A. a synergist
B. a fixator
C. an insertion
D. an antagonist

3. Which of the following statements is correct about
what happens during flexion?

A. The angle between bones is increased.
B. The angle between bones is decreased.
C. The bone moves away from the body.
D. The bone moves toward the center of the body.

4. Which is moved the least during muscle
contraction?

A. the origin
B. the insertion
C. the ligaments
D. the joints

5. Which muscle has a convergent pattern of
fascicles?

A. biceps brachii
B. gluteus maximus
C. pectoralis major
D. rectus femoris
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6. A muscle that has a pattern of fascicles running
along the long axis of the muscle has which of the
following fascicle arrangements?

A. circular
B. pennate
C. parallel
D. rectus

7. Which arrangement best describes a bipennate
muscle?

A. The muscle fibers feed in on an angle to a long
tendon from both sides.

B. The muscle fibers feed in on an angle to a long
tendon from all directions.

C. The muscle fibers feed in on an angle to a long
tendon from one side.

D. The muscle fibers on one side of a tendon feed
into it at a certain angle and muscle fibers on the
other side of the tendon feed into it at the
opposite angle.

Critical Thinking Questions

1. What effect does fascicle arrangement have on a
muscle’s action?<

2. Movements of the body occur at joints. Describe
how muscles are arranged around the joints of the
body.
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3. Explain how a synergist assists an agonist by being
a fixator.

Glossary

abduct
move away from midline in the sagittal plane

agonist
(also, prime mover) muscle whose contraction is
responsible for producing a particular motion

antagonist
muscle that opposes the action of an agonist

belly
bulky central body of a muscle

bipennate
pennate muscle that has fascicles that are located on both
sides of the tendon

circular
(also, sphincter) fascicles that are concentrically arranged
around an opening

convergent
fascicles that extend over a broad area and converge on a
common attachment site

fascicle
muscle fibers bundled by perimysium into a unit

fixator
synergist that assists an agonist by preventing or reducing
movement at another joint, thereby stabilizing the origin
of the agonist

flexion
movement that decreases the angle of a joint
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fusiform
muscle that has fascicles that are spindle-shaped to create
large bellies

insertion
end of a skeletal muscle that is attached to the structure
(usually a bone) that is moved when the muscle contracts

multipennate
pennate muscle that has a tendon branching within it

origin
end of a skeletal muscle that is attached to another
structure (usually a bone) in a fixed position

parallel
fascicles that extend in the same direction as the long axis
of the muscle

pennate
fascicles that are arranged differently based on their
angles to the tendon

prime mover
(also, agonist) principle muscle involved in an action

synergist
muscle whose contraction helps a prime mover in an
action

unipennate
pennate muscle that has fascicles located on one side of
the tendon

Solutions

Answers for Review Questions

1. D
2. A
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3. B
4. A
5. C
6. C
7. A

Answers for Critical Thinking Questions

1. Fascicle arrangements determine what type of
movement a muscle can make. For instance,
circular muscles act as sphincters, closing orifices.

2. Muscles work in pairs to facilitate movement of
the bones around the joints. Agonists are the
prime movers while antagonists oppose or resist
the movements of the agonists. Synergists assist
the agonists, and fixators stabilize a muscle’s
origin.

3. Agonists are the prime movers while
antagonists oppose or resist the movements of
the agonists. Synergists assist the agonists, and
fixators stabilize a muscle’s origin.

9.7 Interactions of Skeletal Muscles, Their Fascicle Arrangement, and
Their Lever Systems | 719





PART X

CHAPTER 10:
MECHANISM OF INJURY

Chapter Objectives

After this chapter, you will be able to:

• Define acute injury, bending, brittle, chronic
injury, compliance, compression, creep,
deformation, ductile, elastic deformation, failure,
tolerance, fatigue, fracture, shear, sprain, stiffness,
strain, strain energy, stress, tension, torsion,
toughness, wear, yield point.

• Describe the different types of load on the body.
• Sketch a load-deformation curve and label the

toe region, elastic region, yield point, plastic
region, strength, stiffness and strain energy.

• Explain how material failure occurs.
• Describe the mechanism of injury for the

muscle, tendon and bones
• Describe how injury affects the mechanics of

the muscle and tendon.
• List the common injuries that occur to bones,

tendons and ligaments.
• Describe the effects of disuse, aging, exercise

on the mechanical properties of bones, tendons

Chapter 10: Mechanism of
Injury | 721



and ligaments.
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71. 10.1
Force-Deformation
Curve

Forces can affect an object’s shape. A change in shape due
to the application of a force is a deformation. Even very small
forces are known to cause some deformation. For small
deformations, two important characteristics are observed. First,
the object returns to its original shape when the force is
removed—that is, the deformation is elastic for small
deformations. Second, the size of the deformation is
proportional to the force—that is, for small deformations,
Hooke’s law is obeyed. In equation form, Hooke’s law is given
by

where ΔL is the amount of deformation (the change in length,
for example) produced by the force F, and k is a proportionality
constant that depends on the shape and composition of the
object and the direction of the force. Note that this force is
a function of the deformation ΔL — it is not constant as a
kinetic friction force is. Sometimes we use Δx instead of ΔL.
The deformation can be along any axis. Rearranging this to

makes it clear that the deformation is proportional to the
applied force. Figure 1 shows the Hooke’s law relationship
between the extension ΔL of a spring or of a human bone. For
metals or springs, the straight line region in which Hooke’s law
pertains is much larger. Bones are brittle and the elastic region
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is small and the fracture abrupt. Eventually a large enough
stress to the material will cause it to break or fracture. Tensile
strength is the breaking stress that will cause permanent
deformation or fracture of a material.

HOOKE’S LAW

where ΔL is the amount of deformation (the
change in length, for example) produced by the
force F, andk is a proportionality constant that
depends on the shape and composition of the
object and the direction of the force.
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Figure 1. A graph of deformation ΔL
versus applied force F. The straight
segment is the linear region where
Hooke’s law is obeyed. The slope of the
straight region is 1 / k. For larger forces,
the graph is curved but the deformation
is still elastic—ΔL will return to zero if the
force is removed. Still greater forces
permanently deform the object until it
finally fractures. The shape of the curve
near fracture depends on several factors,
including how the force F is applied. Note
that in this graph the slope increases just
before fracture, indicating that a small
increase inF is producing a large increase
in L near the fracture.

The proportionality constant k depends upon a number of
factors for the material.

We now consider the type of deformation that will cause a
change in length (tension and compression). There are also
sideways forces that cause shear (stress), and changes in
volume, but we will not go into detail about them in this course.
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Changes in Length—Tension and
Compression: Elastic Modulus

A change in length ΔL is produced when a force is applied to a
muscle or tendon parallel to its length L0, either stretching it (a
tension) or compressing it. (See Figure 3.)

Figure 3. (a) Tension. The
muscle/tendon is stretched a
length ΔL when a force is
applied parallel to its length. (b)
Compression. The same rod is
compressed by forces with the
same magnitude in the
opposite direction. For very
small deformations and
uniform materials, ΔL is
approximately the same for the
same magnitude of tension or
compression. For larger
deformations, the
cross-sectional area changes as
the rod is compressed or
stretched.

726 | 10.1 Force-Deformation Curve



Experiments have shown that the change in length (ΔL)
depends on only a few variables. As already noted, ΔL is
proportional to the force F and depends on the substance from
which the material is made. Additionally, the change in length
is proportional to the original length L0 and inversely
proportional to the cross-sectional area of the wire or rod. For
example, a long guitar string will stretch more than a short
one, and a thick string will stretch less than a thin one. We can
combine all these factors into one equation for ΔL:

where ΔL is the change in length, F the applied force, Y is
a factor, called the elastic modulus or Young’s modulus, that
depends on the substance, A is the cross-sectional area, and
L0 is the original length. Table 3 lists values of Y for several
materials—those with a large Y are said to have a large tensile
stiffness because they deform less for a given tension or
compression.

Bones, on the whole, do not fracture due to tension or
compression. Rather they generally fracture due to sideways
impact or bending, resulting in the bone shearing or snapping.
The behaviour of bones under tension and compression is
important because it determines the load the bones can carry.
Bones are classified as weight-bearing structures such as
columns in buildings and trees. Weight-bearing structures
have special features; columns in building have steel-
reinforcing rods while trees and bones are fibrous. The bones in
different parts of the body serve different structural functions
and are prone to different stresses. Thus the bone in the top
of the femur is arranged in thin sheets separated by marrow
while in other places the bones can be cylindrical and filled
with marrow or just solid. Overweight people have a tendency
toward bone damage due to sustained compressions in bone
joints and tendons.
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Functionally, the tendon (the tissue connecting muscle to
bone) must stretch easily at first when a force is applied, but
offer a much greater restoring force for a greater strain. Figure
5 shows a stress-strain relationship for a human tendon. Some
tendons have a high collagen content so there is relatively little
strain, or length change; others, like support tendons (as in
the leg) can change length up to 10%. Note that this stress-
strain curve is nonlinear, since the slope of the line changes in
different regions. In the first part of the stretch called the toe
region, the fibers in the tendon begin to align in the direction
of the stress—this is called uncrimping. In the linear region,
the fibrils will be stretched, and in the failure region individual
fibers begin to break. A simple model of this relationship can
be illustrated by springs in parallel: different springs are
activated at different lengths of stretch. Examples of this are
given in the problems at end of this chapter. Ligaments (tissue
connecting bone to bone) behave in a similar way.

Figure 5. Typical stress-strain curve for
mammalian tendon. Three regions are
shown: (1) toe region (2) linear region, and
(3) failure region.

Unlike bones and tendons, which need to be strong as well
as elastic, the arteries and lungs need to be very stretchable.
The elastic properties of the arteries are essential for blood
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flow. The pressure in the arteries increases and arterial walls
stretch when the blood is pumped out of the heart. When the
aortic valve shuts, the pressure in the arteries drops and the
arterial walls relax to maintain the blood flow. When you feel
your pulse, you are feeling exactly this—the elastic behaviour of
the arteries as the blood gushes through with each pump of
the heart. If the arteries were rigid, you would not feel a pulse.
The heart is also an organ with special elastic properties. The
lungs expand with muscular effort when we breathe in but
relax freely and elastically when we breathe out. Our skins are
particularly elastic, especially for the young. A young person
can go from 100 kg to 60 kg with no visible sag in their skins.
The elasticity of all organs reduces with age. Gradual
physiological aging through reduction in elasticity starts in the
early 20s.

Example 2: Calculating
Deformation: How Much Does Your
Leg Shorten When You Stand on It?

Calculate the change in length of the upper leg
bone (the femur) when a 70.0 kg man supports 62.0
kg of his mass on it, assuming the bone to be
equivalent to a uniform rod that is 40.0 cm long and
2.00 cm in radius.

Strategy

The force is equal to the weight supported, or
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and the cross-sectional area is πr2 = 1.257 × 10-3

m2. The equation can be used

to find the change in length.

Solution

All quantities except ΔL are known. Note that the
compression value for Young’s modulus for bone
must be used here. Thus,

Discussion

This small change in length seems reasonable,
consistent with our experience that bones are rigid.
In fact, even the rather large forces encountered
during strenuous physical activity do not compress
or bend bones by large amounts. Although bone is
rigid compared with fat or muscle, several of the
substances listed in Table 3 have larger values of
Young’s modulus Y. In other words, they are more
rigid.

The equation for change in length is traditionally rearranged
and written in the following form:

The ratio of force to area, is defined as stress (measured in
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N/m2), and the ratio of the change in length to length, is

defined as strain (a unitless quantity). In other words,

In this form, the equation is analogous to Hooke’s law, with
stress analogous to force and strain analogous to deformation.
If we again rearrange this equation to the form

we see that it is the same as Hooke’s law with a proportionality
constant

This general idea—that force and the deformation it causes
are proportional for small deformations—applies to changes in
length, sideways bending, and changes in volume.

STRESS

The ratio of force to area, is defined as stress

measured in N/m2.
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STRAIN

The ratio of the change in length to length,

is defined as strain (a unitless quantity). In

other words,

Section Summary

• Hooke’s law is given by
or

where ΔL is the amount of deformation (the change in
length), F is the applied force, and k is a proportionality
constant that depends on the shape and composition of
the object and the direction of the force. The relationship
between the deformation and the applied force can also be
written as

where Y is Young’s modulus, which depends on the
substance, A is the cross-sectional area, and L0 is the
original length.
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• The ratio of force to area, is defined as stress,

measured in N/m2.

• The ratio of the change in length to length, is

defined as strain (a unitless quantity). In other words,

•

Conceptual Questions

1: The elastic properties of the arteries are essential
for blood flow. Explain the importance of this in terms
of the characteristics of the flow of blood (pulsating or
continuous).

2: What are you feeling when you feel your pulse?
Measure your pulse rate for 10 s and for 1 min. Is there a
factor of 6 difference?

3: Examine different types of shoes, including sports
shoes and thongs. In terms of physics, why are the
bottom surfaces designed as they are? What
differences will dry and wet conditions make for these
surfaces?

4: Would you expect your height to be different
depending upon the time of day? Why or why not?

5: Why can a squirrel jump from a tree branch to the
ground and run away undamaged, while a human
could break a bone in such a fall?
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Problems & Exercises

1: During a circus act, one performer swings upside
down hanging from a trapeze holding another, also
upside-down, performer by the legs. If the upward
force on the lower performer is three times her weight,
how much do the bones (the femurs) in her upper legs
stretch? You may assume each is equivalent to a
uniform rod 35.0 cm long and 1.80 cm in radius. Her
mass is 60.0 kg.

2: During a wrestling match, a 150 kg wrestler briefly
stands on one hand during a maneuver designed to
perplex his already moribund adversary. By how much
does the upper arm bone shorten in length? The bone
can be represented by a uniform rod 38.0 cm in length
and 2.10 cm in radius.

3: (a) By how much does a 65.0-kg mountain climber
stretch her 0.800-cm diameter nylon rope when she
hangs 35.0 m below a rock outcropping? (b) Does the
answer seem to be consistent with what you have
observed for nylon ropes? Would it make sense if the
rope were actually a bungee cord?

Footnotes

1. 1 Approximate and average values. Young’s moduli Y for
tension and compression sometimes differ but are
averaged here. Bone has significantly different Young’s
moduli for tension and compression.
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Glossary

deformation
change in shape due to the application of force

Hooke’s law
proportional relationship between the force F on a
material and the deformation ΔL it causes, F = kΔL

tensile strength
the breaking stress that will cause permanent
deformation or fraction of a material

stress
ratio of force to area

strain
ratio of change in length to original length

shear deformation
deformation perpendicular to the original length of an
object

Solutions

Problems & Exercises

1:

3: (a) $\boldsymbol{9\textbf{ cm}}$ (b) This seems
reasonable for nylon climbing rope, since it is not
supposed to stretch that much.
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