Clearing the Air: NO₂ Pollution's Impact on Local Lichen Earth and Environmental Science 2537 Reha Kumar

Abstract

Dense urban cities cause significant vehicle emissions. contributing to atmospheric nitrogen dioxide (NO2) pollution. I analyzed air quality reports across Metro Vancouver over 20 years, to find average NO2 levels. Five cities showed NO₂ pollution ranging from 3 to 19 parts per billion. Lichen are rootless organisms reliant on airborne nutrients and are particularly sensitive to NO2. I investigated the relationship between NO2 pollution and lichen by surveying richness, abundance, and biomass in the field. By using three transects (each 10m long), I recorded trees with lichen within 1m of the transect line. I measured lichen height, width, and length and used other observations that suggested trends between the variables and average NO2. All variables were inconsistent, and statistical analysis proved trends to be insignificant. While suggestive of the effects of pollution on local lichen, these findings warrant further investigation.

Introduction

The environment suffers from industrial and population growth in Canada. The transportation sector made up 22% of greenhouse gas emissions in 2021, a 4% increase from 2020 (Government of Canada, 2021). Vehicle emissions are linked to city smog, human respiratory illness, and limit or damage environmental sustainability (Government of British Columbia 2023) Vehicle combustion of fossil fuels releases pollutants in the air, notably NO2 (Government of British Columbia 2023). An annual high NO2 level in Canada is over 20 ppb (Government of British Columbia 2020). Rootless lichen absorbs nutrients from the atmosphere, risking the uptake of toxins, especially NO2 (The U.S. National Park Service, 2023). NO2 can be a nutrient, but as levels rise, may cause stress and mortality, affecting lichen diversity (Greaver, 2023). For this study, lichen is used as a measurable variable to assess if air pollution impacts biodiversity. Lichen provide habitat, nesting materials and nutrients to other organisms. (U.S. National Park Service 2018). I find out how atmospheric NO2 levels influence lichen richness, abundance, and biodiversity. I predicted to find more lichen in areas with lower NO2 levels, and less in NO2-rich locations

Methods/Materials

· To determine average NO2 levels, I analyzed 24 air quality station reports from 2004-2024 and plotted the data to choose my sampling locations.

· Statistical analysis found and compared the average amounts of NO2.

· I visited parks in 5 cities shown in Figure. 1 based on the average NO2 level.

· At each site, I walked along three 10-meter-long transect lines and recorded trees with lichen within 1m of the line.

· I recorded the number of lichens, and species by using iNaturalist, two are pictured in Figure 5. To assess biomass, I measured each lichen's height (cm), width (cm), and length (cm).

· The collected data went through Correlation ANOVA analysis to determine significant trends between average NO2 and lichen richness, abundance and biomass.

chen Species	Total Abundance	Distance (km) From Boundary Bay
Fluffy Dust Lichen (Lepraria finkii)	36	22.6, 33.1, 37.3, 38.1, 70.7
Common Powderhorn Lichen (Cladonia coniocraea)	1	70.7
Pea-green Sheild Lichen (Parmelia fraudans)	27	22.6, 33.1, 37.3, 38.1, 70.7
Rim Lichen (Lecanora conizaeoides)	1	70.7
Common Greensheild Lichen (Flavoparmelia caperata)	1	70.0
White Rim Lichen (Lecanora rupicola)	3	37.3, 38.1
White Dust Lichen (Lepraria albicans)	1	37.3
Candleflame Lichen (Candelaria concolor)	2	37.3
Usnea Lichen (Usnea)	2	37.3
Mapledust Lichen (Lecanora thysanophora)	2	22.6, 33.1
Oakmoss Lichen (Evernia prunastri)	1	37.3
Trumpet Lichen (Cladonia fimbriata)	1	22.6

Table 1. Common name and nomenclature for observed lichen species, their total richness, and what sites they were found at.

Figure 1. Map of Lower Mainland depicting surveyed cities visited. Mission, Pitt Meadows, Coquitlam, Port Moody, and Richmond are all highlighted with red stars. (Parks of Greater Vancouver).

Results	
 Of the 24 stations, I selected Mission (3 ppb), Pitt Meadows (7 ppb), Coquitan (14 ppb), Port Moody (15 ppb), and Richmond (19 ppb). In Canada, a high annua amount of NO2 is > 20 ppb (Gov. of B.C. 2020), so the cities represent relatively low to high NO2 levels. A dozen lichen species were counted, measured, and identified, as seen in Table and Figure 5. There is no clear trend in richness by average NO2 as seen in Figure 2. The highes richness value was observed at Coquitam with an average NO2 level of 14 ppb suggesting a possible association between NO2 concentration and lichen richness However, it was not significant, p= 0.65. Abundance by NO2 concentrations showed inconsistent trends shown in Figure 3 with no apparent pattern based on NO2 concentrations and was also insignificant, p= 0.426 Biomass by NO2 concentrations has one exceptionally high value at Port Moody with an average NO2 level of 15 ppb displayed in Figure 3. This influences th overall trend, making it difficult to discern a clear pattern. The trend is no significant, p=0.602. 	al y 1 st , s. 3, = /, e
Total Lichen Richness by Average NO2	
14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	
12	
§ 8	

Discussion

Figure 2. The average NO2 levels and lichen richness surveyed across different 5

locations with the standard error calculation. The trendline was inconsistent

10

Average NO2 (ppb

The purpose of this study was to find out how air pollution affects lichen by using local communities of the lower mainland and to assess how NO2 pollution affects lichen richness, abundance, and biomass. The data proposes possible connections between variables and the average NO2. Through the statistical analysis, however, all the variables were shown to be insignificant. Some factors that may have influenced the outcome of my data are that a high reading of NO2 in Canada is < 17 ppb which only Richmond (22.6 Km) exceeds, while the rest fall < 17 ppb. Richmond could be affected by Delta nearby as the air pressure gradient near water bodies can pull pollutants away from land. (Zhu, 2019). This may have caused lower numbers than expected. Alongside vehicle combustion, other sources of NO2 emissions come from heat-generating household appliances and the burning of coal or wood (Jarvis 2010). The factor of wood combustion releasing NO2 into the atmosphere is very relevant in British Columbia. Wildfires have become a common occurrence every summer as temperatures rise, which release a high volume of NO2 at once. I imagine in an area heavily impacted by smoke, the lichen may be more affected as well. Conducting a larger-scale field survey may be able to provide more data to support the possible connection between air pollution and lichen. My study was unable to support my hypothesis, even so, lichen is important for many organisms in an ecosystem, and they can be altered by NO2 pollution which may lead to disturbances in other systems in the environment.

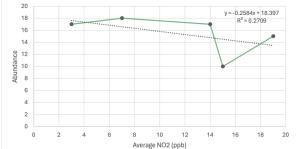


Figure 3. The relationship between abundance and average NO2 levels in the 5 surveyed locations, along with standard error. Notice the inconsistent trendline.

Total Lichen Biomass by Average NO2

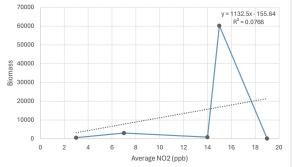


Figure 4. The graphed data shows the total calculated biomass across all 5 surveyed sites with the standard error. The trendline has one high value that throws off all the data

Figure 5. Two surveyed lichen species. On the left, Pea-green Shield and Powderhorn Lichen. On the right, White Rim lichen surrounded by more Pea-green shield lichen

References

Government of British Columbia, (2020), Status of Nitrogen Dioxide in B.C.

https://www.env.gov.bc.ca/soe/indicators/air/no2.html#:~:tex =NO2%20levels%20are%20calculated.are%2060%20ppb%2 or%20lower.

Government of British Columbia, (2023), Vehicle emissions, https://www2.gov.bc.ca/gov/content/environment/air-landwater/air/air-pollution/emissions/transportation/vehicle

Government of Canada. (2021). Canada's National Greenhouse Gas Inventory (1990-2021). https://www.canada.ca/en/environment-clin change/news/2023/04/canadas inventory-19902021.html

Greaver, T., McDo, S., Phelan, J., Kaylor, S. D., Herrick J D., Jovan S. (2023). Synthesis of lichen response to gaseous nitrogen: Ammonia versus nitrogen dioxide [Journal]. Atmospheric Environment, 292, 119396. Science Direct. https://www.sciencedirect.com/science/article/abs/pii/S13522 1022004617#:~:text=Both%20NO2%20and%20NH.change% 20community%20composition%20and%20diversity

Jarvis, D.J., Adamkiewicz, G., Heroux, ME., Rapp, R.J., Kelly, F.J. (2010). WHO Guidelines for Indoor Air Ouality. Selected Pollutants. 5. Nitrogen dioxide. [Book]. Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK138707/#:~:text=Re

20traffic%20is%20the%20principal unflued%20or%20p 20 maintained%20appliances.

Parks Of Greater Vancouver. (2024). Screenshot.

U.S. National Park Service, (2018), Lichen - The Little Things That Matter [Article]. https://www.nps.gov/articles/lichen-and-ourair.htm#:~:text=Here%20are%20some%20of%20the.provid %20nesting%20materials%20for%20birds.

U.S. National Park Service. (2023). Studying Air Pollution with Plants and Animals [Article]. Bioindicators - Air. https://www.nps.gov/subjects/air/bioindicators.htm#:~text=Pl oto %2FMike%20Bell-Lichen.from%20precipitation%20and%20the% 20ain

Zhu, D., and Zhou, X. (2019). Effect of urban water bodies on distribution characteristics of particulate matters and NO2. Sustainable Cities and Society, 50, 101679. Science Direct. https://www.sciencedirect.com/science/article/abs/pii/S22106' erage%20in.ecological%20effect%20of%20water%20bodv

I would like to acknowledge my instructor Dr. Jessica Clasen for making this project possible and pushing me to do my best work. I am incredibly grateful for her guidance through every step of my research and her suggestions during the assembly of my project. I would also like to give my thanks and acknowledge Nicolas Thurston for accompanying me during data collection in the field and providing continuous support. I also give my thanks to Derek Turner, the EAES department and Douglas College.