
BACKGROUND AND PURPOSE
The Product Care Association (PCA) plays a crucial role in diverting 
post-consumer lighting products from landfills through recycling 
programs across multiple Canadian provinces. However, the current 
product inquiry process—determining whether a product qualifies for 
recycling and identifying its product category—is largely manual, leading 
to ine�ciencies, inconsistent decision-making, and operational delays. 
This research aims to develop an AI-powered Product Inquiry Response 
System to enhance e�ciency by leveraging machine learning (ML).

RESEARCH QUESTION
How can I design and implement an end-to-end AI-powered system that 
e�ectively integrates text and image data to enhance matching accuracy 
and minimize response times in the current product inquiry process?

METHODOLOGY
1. WEB PORTAL DEVELOPMENT
Frontend: Built using Python Flask and Bootstrap for responsive user 
interface.
Backend: Manages API calls and integrates ML models using Python 
Flask.
Data Storage: Inquiry text is stored in Azure Table Storage; images in 
Azure Blob Storage.
User Roles:

▪ Member: Submits and views inquiries.
▪ Admin: Reviews ML-recommended categories, approves or overrides

them.
Typical Flow: A member submits a product inquiry. The system stores 
data and triggers the ML model to recommend a category. The admin 
reviews and finalizes the recommended category.

2. ML MODEL FOR TEXT SIMILARITY
Objective: Accurately compare name and description of the submitted 
product to existing product descriptions.
Technique: Sentence-BERT (SBERT), a fine-tuned transformer for 
semantic similarity. SBERT converts sentences into dense vector 
embeddings to measure how semantically similar two texts are.
Platform: Hugging Face’s SentenceTransformer library.
Model Evaluation: Multiple SBERT models—including all-mpnet-base-v2, 
roberta-large-nli-stsb-mean-tokens, bert-large-nli-stsb-mean-tokens, 
all-MiniLM-L12-v2, all-MiniLM-L6-v2, 
roberta-base-nli-stsb-mean-tokens, 
paraphrase-multilingual-MiniLM-L12-v2, bert-base-nli-mean-tokens, and 
distilbert-base-nli-stsb-mean-tokens—were evaluated using Mean 
Reciprocal Rank (MRR) and Top-K Accuracy to determine their 
e�ectiveness in semantic text similarity tasks.
Best Performers:

▪ Short text: all-mpnet-base-v2 — balances accuracy and
performance.

▪ Long text: bert-large-nli-stsb-mean-tokens — handles detailed
descriptions well.

3. ML MODEL FOR IMAGE SIMILARITY
Objective: Identify visually similar products in the product guide.
Technique: Convolutional Neural Networks (CNN) based feature 
extraction. CNN extracts visual features from images to identify patterns 
and compare visual similarity between di�erent images.

Model Evaluation: Multiple CNN models—including ResNet50, VGG16 / 
VGG19, InceptionV3, DenseNet, E�cientNet, MobileNetV2—were 
evaluated.
Best Performer: ResNet50 — due to its deep residual learning 
architecture and proven performance in feature extraction.

4. ENSEMBLE METHOD
Combines text and image similarity scores using a weighted approach, 
resulting in more accurate and robust product matches. This method 
ensures that both visual and descriptive cues influence the final match.

FINDINGS
▪ Top Text Models: all-mpnet-base-v2, bert-large-nli-stsb-mean-tokens
▪ Top Image Model: ResNet50
▪ The ensemble model showed improved accuracy and consistency

across varied product categories.

LIMITATIONS
▪ Limited training and fine-tuning due to insu�cient labeled data for

machine learning models.
▪ System performance depends heavily on the accuracy and

completeness of product details submitted by members.

IMPLICATIONS
▪ Establishes a scalable AI framework that can be extended to other

recycling categories beyond lighting products. (examples: Paint, Smoke
Alarms, etc.)

▪ Demonstrates potential for significant cost savings and operational
e�ciency through AI-driven automation within circular economy
initiatives.

CONCLUSION
The AI-powered system significantly enhances the current manual 
process by reducing response time by approximately 80% and improving 
matching accuracy, leading to greater operational e�ciency and 
consistency in decision-making.
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